uploaded project

This commit is contained in:
Bruno Hütter 2020-12-03 12:11:12 +01:00
parent 9159442900
commit 1095be2283
28 changed files with 7092 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,317 @@
#ifndef DallasTemperature_h
#define DallasTemperature_h
#define DALLASTEMPLIBVERSION "3.8.1" // To be deprecated -> TODO remove in 4.0.0
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// set to true to include code for new and delete operators
#ifndef REQUIRESNEW
#define REQUIRESNEW false
#endif
// set to true to include code implementing alarm search functions
#ifndef REQUIRESALARMS
#define REQUIRESALARMS true
#endif
#include <inttypes.h>
#ifdef __STM32F1__
#include <OneWireSTM.h>
#else
#include "../OneWire/OneWire.h"
#endif
// Model IDs
#define DS18S20MODEL 0x10 // also DS1820
#define DS18B20MODEL 0x28 // also MAX31820
#define DS1822MODEL 0x22
#define DS1825MODEL 0x3B
#define DS28EA00MODEL 0x42
// Error Codes
#define DEVICE_DISCONNECTED_C -127
#define DEVICE_DISCONNECTED_F -196.6
#define DEVICE_DISCONNECTED_RAW -7040
// For readPowerSupply on oneWire bus
// definition of nullptr for C++ < 11, using official workaround:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
#if __cplusplus < 201103L
const class
{
public:
template <class T>
operator T *() const
{
return 0;
}
template <class C, class T>
operator T C::*() const
{
return 0;
}
private:
void operator&() const;
} nullptr = {};
#endif
typedef uint8_t DeviceAddress[8];
class DallasTemperature {
public:
DallasTemperature();
DallasTemperature(OneWire*);
DallasTemperature(OneWire*, uint8_t);
void setOneWire(OneWire*);
void setPullupPin(uint8_t);
// initialise bus
void begin(void);
// returns the number of devices found on the bus
uint8_t getDeviceCount(void);
// returns the number of DS18xxx Family devices on bus
uint8_t getDS18Count(void);
// returns true if address is valid
bool validAddress(const uint8_t*);
// returns true if address is of the family of sensors the lib supports.
bool validFamily(const uint8_t* deviceAddress);
// finds an address at a given index on the bus
bool getAddress(uint8_t*, uint8_t);
// attempt to determine if the device at the given address is connected to the bus
bool isConnected(const uint8_t*);
// attempt to determine if the device at the given address is connected to the bus
// also allows for updating the read scratchpad
bool isConnected(const uint8_t*, uint8_t*);
// read device's scratchpad
bool readScratchPad(const uint8_t*, uint8_t*);
// write device's scratchpad
void writeScratchPad(const uint8_t*, const uint8_t*);
// read device's power requirements
bool readPowerSupply(const uint8_t* deviceAddress = nullptr);
// get global resolution
uint8_t getResolution();
// set global resolution to 9, 10, 11, or 12 bits
void setResolution(uint8_t);
// returns the device resolution: 9, 10, 11, or 12 bits
uint8_t getResolution(const uint8_t*);
// set resolution of a device to 9, 10, 11, or 12 bits
bool setResolution(const uint8_t*, uint8_t,
bool skipGlobalBitResolutionCalculation = false);
// sets/gets the waitForConversion flag
void setWaitForConversion(bool);
bool getWaitForConversion(void);
// sets/gets the checkForConversion flag
void setCheckForConversion(bool);
bool getCheckForConversion(void);
// sends command for all devices on the bus to perform a temperature conversion
void requestTemperatures(void);
// sends command for one device to perform a temperature conversion by address
bool requestTemperaturesByAddress(const uint8_t*);
// sends command for one device to perform a temperature conversion by index
bool requestTemperaturesByIndex(uint8_t);
// returns temperature raw value (12 bit integer of 1/128 degrees C)
int16_t getTemp(const uint8_t*);
// returns temperature in degrees C
float getTempC(const uint8_t*);
// returns temperature in degrees F
float getTempF(const uint8_t*);
// Get temperature for device index (slow)
float getTempCByIndex(uint8_t);
// Get temperature for device index (slow)
float getTempFByIndex(uint8_t);
// returns true if the bus requires parasite power
bool isParasitePowerMode(void);
// Is a conversion complete on the wire? Only applies to the first sensor on the wire.
bool isConversionComplete(void);
int16_t millisToWaitForConversion(uint8_t);
// Sends command to one device to save values from scratchpad to EEPROM by index
// Returns true if no errors were encountered, false indicates failure
bool saveScratchPadByIndex(uint8_t);
// Sends command to one or more devices to save values from scratchpad to EEPROM
// Returns true if no errors were encountered, false indicates failure
bool saveScratchPad(const uint8_t* = nullptr);
// Sends command to one device to recall values from EEPROM to scratchpad by index
// Returns true if no errors were encountered, false indicates failure
bool recallScratchPadByIndex(uint8_t);
// Sends command to one or more devices to recall values from EEPROM to scratchpad
// Returns true if no errors were encountered, false indicates failure
bool recallScratchPad(const uint8_t* = nullptr);
// Sets the autoSaveScratchPad flag
void setAutoSaveScratchPad(bool);
// Gets the autoSaveScratchPad flag
bool getAutoSaveScratchPad(void);
#if REQUIRESALARMS
typedef void AlarmHandler(const uint8_t*);
// sets the high alarm temperature for a device
// accepts a int8_t. valid range is -55C - 125C
void setHighAlarmTemp(const uint8_t*, int8_t);
// sets the low alarm temperature for a device
// accepts a int8_t. valid range is -55C - 125C
void setLowAlarmTemp(const uint8_t*, int8_t);
// returns a int8_t with the current high alarm temperature for a device
// in the range -55C - 125C
int8_t getHighAlarmTemp(const uint8_t*);
// returns a int8_t with the current low alarm temperature for a device
// in the range -55C - 125C
int8_t getLowAlarmTemp(const uint8_t*);
// resets internal variables used for the alarm search
void resetAlarmSearch(void);
// search the wire for devices with active alarms
bool alarmSearch(uint8_t*);
// returns true if ia specific device has an alarm
bool hasAlarm(const uint8_t*);
// returns true if any device is reporting an alarm on the bus
bool hasAlarm(void);
// runs the alarm handler for all devices returned by alarmSearch()
void processAlarms(void);
// sets the alarm handler
void setAlarmHandler(const AlarmHandler *);
// returns true if an AlarmHandler has been set
bool hasAlarmHandler();
#endif
// if no alarm handler is used the two bytes can be used as user data
// example of such usage is an ID.
// note if device is not connected it will fail writing the data.
// note if address cannot be found no error will be reported.
// in short use carefully
void setUserData(const uint8_t*, int16_t);
void setUserDataByIndex(uint8_t, int16_t);
int16_t getUserData(const uint8_t*);
int16_t getUserDataByIndex(uint8_t);
// convert from Celsius to Fahrenheit
static float toFahrenheit(float);
// convert from Fahrenheit to Celsius
static float toCelsius(float);
// convert from raw to Celsius
static float rawToCelsius(int16_t);
// convert from raw to Fahrenheit
static float rawToFahrenheit(int16_t);
#if REQUIRESNEW
// initialize memory area
void* operator new (unsigned int);
// delete memory reference
void operator delete(void*);
#endif
private:
typedef uint8_t ScratchPad[9];
// parasite power on or off
bool parasite;
// external pullup
bool useExternalPullup;
uint8_t pullupPin;
// used to determine the delay amount needed to allow for the
// temperature conversion to take place
uint8_t bitResolution;
// used to requestTemperature with or without delay
bool waitForConversion;
// used to requestTemperature to dynamically check if a conversion is complete
bool checkForConversion;
// used to determine if values will be saved from scratchpad to EEPROM on every scratchpad write
bool autoSaveScratchPad;
// count of devices on the bus
uint8_t devices;
// count of DS18xxx Family devices on bus
uint8_t ds18Count;
// Take a pointer to one wire instance
OneWire* _wire;
// reads scratchpad and returns the raw temperature
int16_t calculateTemperature(const uint8_t*, uint8_t*);
void blockTillConversionComplete(uint8_t);
// Returns true if all bytes of scratchPad are '\0'
bool isAllZeros(const uint8_t* const scratchPad, const size_t length = 9);
// External pullup control
void activateExternalPullup(void);
void deactivateExternalPullup(void);
#if REQUIRESALARMS
// required for alarmSearch
uint8_t alarmSearchAddress[8];
int8_t alarmSearchJunction;
uint8_t alarmSearchExhausted;
// the alarm handler function pointer
AlarmHandler *_AlarmHandler;
#endif
};
#endif

View File

@ -0,0 +1,72 @@
# Arduino Library for Maxim Temperature Integrated Circuits
## Usage
This library supports the following devices :
* DS18B20
* DS18S20 - Please note there appears to be an issue with this series.
* DS1822
* DS1820
* MAX31820
You will need a pull-up resistor of about 5 KOhm between the 1-Wire data line
and your 5V power. If you are using the DS18B20, ground pins 1 and 3. The
centre pin is the data line '1-wire'.
In case of temperature conversion problems (result is `-85`), strong pull-up setup may be necessary. See section
_Powering the DS18B20_ in
[DS18B20 datasheet](https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf) (page 7)
and use `DallasTemperature(OneWire*, uint8_t)` constructor.
We have included a "REQUIRESNEW" and "REQUIRESALARMS" definition. If you
want to slim down the code feel free to use either of these by including
#define REQUIRESNEW
or
#define REQUIRESALARMS
at the top of DallasTemperature.h
Finally, please include OneWire from Paul Stoffregen in the library manager before you begin.
## Credits
The OneWire code has been derived from
http://www.arduino.cc/playground/Learning/OneWire.
Miles Burton <miles@mnetcs.com> originally developed this library.
Tim Newsome <nuisance@casualhacker.net> added support for multiple sensors on
the same bus.
Guil Barros [gfbarros@bappos.com] added getTempByAddress (v3.5)
Note: these are implemented as getTempC(address) and getTempF(address)
Rob Tillaart [rob.tillaart@gmail.com] added async modus (v3.7.0)
## Website
You can find the latest version of the library at
https://www.milesburton.com/Dallas_Temperature_Control_Library
# License
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

View File

@ -0,0 +1,78 @@
#######################################
# Syntax Coloring Map For DallasTemperature
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
DallasTemperature KEYWORD1
OneWire KEYWORD1
AlarmHandler KEYWORD1
DeviceAddress KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
setOneWire KEYWORD2
setPullupPin KEYWORD2
setResolution KEYWORD2
getResolution KEYWORD2
getTemp KEYWORD2
getTempC KEYWORD2
toFahrenheit KEYWORD2
getTempF KEYWORD2
getTempCByIndex KEYWORD2
getTempFByIndex KEYWORD2
rawToCelsius KEYWORD2
rawToFahrenheit KEYWORD2
setWaitForConversion KEYWORD2
getWaitForConversion KEYWORD2
requestTemperatures KEYWORD2
requestTemperaturesByAddress KEYWORD2
requestTemperaturesByIndex KEYWORD2
setCheckForConversion KEYWORD2
getCheckForConversion KEYWORD2
isConversionComplete KEYWORD2
millisToWaitForConversion KEYWORD2
isParasitePowerMode KEYWORD2
begin KEYWORD2
getDeviceCount KEYWORD2
getDS18Count KEYWORD2
getAddress KEYWORD2
validAddress KEYWORD2
validFamily KEYWORD2
isConnected KEYWORD2
readScratchPad KEYWORD2
writeScratchPad KEYWORD2
readPowerSupply KEYWORD2
saveScratchPadByIndex KEYWORD2
saveScratchPad KEYWORD2
recallScratchPadByIndex KEYWORD2
recallScratchPad KEYWORD2
setAutoSaveScratchPad KEYWORD2
getAutoSaveScratchPad KEYWORD2
setHighAlarmTemp KEYWORD2
setLowAlarmTemp KEYWORD2
getHighAlarmTemp KEYWORD2
getLowAlarmTemp KEYWORD2
resetAlarmSearch KEYWORD2
alarmSearch KEYWORD2
hasAlarm KEYWORD2
toCelsius KEYWORD2
processAlarms KEYWORD2
setAlarmHandler KEYWORD2
hasAlarmHandler KEYWORD2
setUserData KEYWORD2
setUserDataByIndex KEYWORD2
getUserData KEYWORD2
getUserDataByIndex KEYWORD2
calculateTemperature KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
DEVICE_DISCONNECTED_C LITERAL1
DEVICE_DISCONNECTED_F LITERAL1
DEVICE_DISCONNECTED_RAW LITERAL1

View File

@ -0,0 +1,40 @@
{
"name": "DallasTemperature",
"keywords": "onewire, 1-wire, bus, sensor, temperature",
"description": "Arduino Library for Dallas Temperature ICs (DS18B20, DS18S20, DS1822, DS1820)",
"repository":
{
"type": "git",
"url": "https://github.com/milesburton/Arduino-Temperature-Control-Library.git"
},
"authors":
[
{
"name": "Miles Burton",
"email": "miles@mnetcs.com",
"url": "http://www.milesburton.com",
"maintainer": true
},
{
"name": "Tim Newsome",
"email": "nuisance@casualhacker.net"
},
{
"name": "Guil Barros",
"email": "gfbarros@bappos.com"
},
{
"name": "Rob Tillaart",
"email": "rob.tillaart@gmail.com"
}
],
"dependencies":
{
"name": "OneWire",
"authors": "Paul Stoffregen",
"frameworks": "arduino"
},
"version": "3.9.0",
"frameworks": "arduino",
"platforms": "*"
}

View File

@ -0,0 +1,10 @@
name=DallasTemperature
version=3.9.0
author=Miles Burton <miles@mnetcs.com>, Tim Newsome <nuisance@casualhacker.net>, Guil Barros <gfbarros@bappos.com>, Rob Tillaart <rob.tillaart@gmail.com>
maintainer=Miles Burton <miles@mnetcs.com>
sentence=Arduino Library for Dallas Temperature ICs
paragraph=Supports DS18B20, DS18S20, DS1822, DS1820
category=Sensors
url=https://github.com/milesburton/Arduino-Temperature-Control-Library
architectures=*
depends=OneWire

580
src/OneWire/OneWire.cpp Normal file
View File

@ -0,0 +1,580 @@
/*
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010.
DO NOT EMAIL for technical support, especially not for ESP chips!
All project support questions must be posted on public forums
relevant to the board or chips used. If using Arduino, post on
Arduino's forum. If using ESP, post on the ESP community forums.
There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
Github's issue tracker for OneWire should be used only to report
specific bugs. DO NOT request project support via Github. All
project and tech support questions must be posted on forums, not
github issues. If you experience a problem and you are not
absolutely sure it's an issue with the library, ask on a forum
first. Only use github to report issues after experts have
confirmed the issue is with OneWire rather than your project.
Back in 2010, OneWire was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul (this is pretty much the only reason to use
private email about OneWire).
OneWire is now very mature code. No changes other than adding
definitions for newer hardware support are anticipated.
Version 2.3:
Unknown chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include <Arduino.h>
#include "OneWire.h"
#include "util/OneWire_direct_gpio.h"
void OneWire::begin(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = false;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number;
bool search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = false;
// if the last call was not the last one
if (!LastDeviceFlag) {
// 1-Wire reset
if (!reset()) {
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
return false;
}
// issue the search command
if (search_mode == true) {
write(0xF0); // NORMAL SEARCH
} else {
write(0xEC); // CONDITIONAL SEARCH
}
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1)) {
break;
} else {
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit) {
search_direction = id_bit; // bit write value for search
} else {
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy) {
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
} else {
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
}
// if 0 was picked then record its position in LastZero
if (search_direction == 0) {
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0) {
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65)) {
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0) {
LastDeviceFlag = true;
}
search_result = true;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0]) {
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
search_result = false;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0
// Tiny 2x16 entry CRC table created by Arjen Lentz
// See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table
static const uint8_t PROGMEM dscrc2x16_table[] = {
0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83,
0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41,
0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8,
0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74
};
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (Use tiny 2x16 entry CRC table)
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = *addr++ ^ crc; // just re-using crc as intermediate
crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^
pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but a little smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
#if defined(__AVR__)
crc = _crc_ibutton_update(crc, *addr++);
#else
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
#endif
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
#if defined(__AVR__)
for (uint16_t i = 0 ; i < len ; i++) {
crc = _crc16_update(crc, input[i]);
}
#else
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
#endif
return crc;
}
#endif
#endif

182
src/OneWire/OneWire.h Normal file
View File

@ -0,0 +1,182 @@
#ifndef OneWire_h
#define OneWire_h
#ifdef __cplusplus
#include <stdint.h>
#if defined(__AVR__)
#include <util/crc16.h>
#endif
#if ARDUINO >= 100
#include <Arduino.h> // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
// You can exclude certain features from OneWire. In theory, this
// might save some space. In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction. Well, unless you try to use the missing features
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1. The lookup table enlarges code size by
// about 250 bytes. It does NOT consume RAM (but did in very
// old versions of OneWire). If you disable this, a slower
// but very compact algorithm is used.
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
// Board-specific macros for direct GPIO
#include "util/OneWire_direct_regtype.h"
class OneWire
{
private:
IO_REG_TYPE bitmask;
volatile IO_REG_TYPE *baseReg;
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
bool LastDeviceFlag;
#endif
public:
OneWire() { }
OneWire(uint8_t pin) { begin(pin); }
void begin(uint8_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
bool search(uint8_t *newAddr, bool search_mode = true);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(const uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
// Prevent this name from leaking into Arduino sketches
#ifdef IO_REG_TYPE
#undef IO_REG_TYPE
#endif
#endif // __cplusplus
#endif // OneWire_h

View File

@ -0,0 +1,64 @@
Please use this form only to report code defects or bugs.
For any question, even questions directly pertaining to this code, post your question on the forums related to the board you are using.
Arduino: forum.arduino.cc
Teensy: forum.pjrc.com
ESP8266: www.esp8266.com
ESP32: www.esp32.com
Adafruit Feather/Metro/Trinket: forums.adafruit.com
Particle Photon: community.particle.io
If you are experiencing trouble but not certain of the cause, or need help using this code, ask on the appropriate forum. This is not the place to ask for support or help, even directly related to this code. Only use this form you are certain you have discovered a defect in this code!
Please verify the problem occurs when using the very latest version, using the newest version of Arduino and any other related software.
----------------------------- Remove above -----------------------------
### Description
Describe your problem.
### Steps To Reproduce Problem
Please give detailed instructions needed for anyone to attempt to reproduce the problem.
### Hardware & Software
Board
Shields / modules used
Arduino IDE version
Teensyduino version (if using Teensy)
Version info & package name (from Tools > Boards > Board Manager)
Operating system & version
Any other software or hardware?
### Arduino Sketch
```cpp
// Change the code below by your sketch (please try to give the smallest code which demonstrates the problem)
#include <Arduino.h>
// libraries: give links/details so anyone can compile your code for the same result
void setup() {
}
void loop() {
}
```
### Errors or Incorrect Output
If you see any errors or incorrect output, please show it here. Please use copy & paste to give an exact copy of the message. Details matter, so please show (not merely describe) the actual message or error exactly as it appears.

38
src/OneWire/keywords.txt Normal file
View File

@ -0,0 +1,38 @@
#######################################
# Syntax Coloring Map For OneWire
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
OneWire KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
reset KEYWORD2
write_bit KEYWORD2
read_bit KEYWORD2
write KEYWORD2
write_bytes KEYWORD2
read KEYWORD2
read_bytes KEYWORD2
select KEYWORD2
skip KEYWORD2
depower KEYWORD2
reset_search KEYWORD2
search KEYWORD2
crc8 KEYWORD2
crc16 KEYWORD2
check_crc16 KEYWORD2
#######################################
# Instances (KEYWORD2)
#######################################
#######################################
# Constants (LITERAL1)
#######################################

61
src/OneWire/library.json Normal file
View File

@ -0,0 +1,61 @@
{
"name": "OneWire",
"description": "Control 1-Wire protocol (DS18S20, DS18B20, DS2408 and etc)",
"keywords": "onewire, 1-wire, bus, sensor, temperature, ibutton",
"authors": [
{
"name": "Paul Stoffregen",
"email": "paul@pjrc.com",
"url": "http://www.pjrc.com",
"maintainer": true
},
{
"name": "Jim Studt"
},
{
"name": "Tom Pollard",
"email": "pollard@alum.mit.edu"
},
{
"name": "Derek Yerger"
},
{
"name": "Josh Larios"
},
{
"name": "Robin James"
},
{
"name": "Glenn Trewitt"
},
{
"name": "Jason Dangel",
"email": "dangel.jason AT gmail.com"
},
{
"name": "Guillermo Lovato"
},
{
"name": "Ken Butcher"
},
{
"name": "Mark Tillotson"
},
{
"name": "Bertrik Sikken"
},
{
"name": "Scott Roberts"
}
],
"repository": {
"type": "git",
"url": "https://github.com/PaulStoffregen/OneWire"
},
"version": "2.3.5",
"homepage": "https://www.pjrc.com/teensy/td_libs_OneWire.html",
"frameworks": "Arduino",
"examples": [
"examples/*/*.pde"
]
}

View File

@ -0,0 +1,10 @@
name=OneWire
version=2.3.5
author=Jim Studt, Tom Pollard, Robin James, Glenn Trewitt, Jason Dangel, Guillermo Lovato, Paul Stoffregen, Scott Roberts, Bertrik Sikken, Mark Tillotson, Ken Butcher, Roger Clark, Love Nystrom
maintainer=Paul Stoffregen
sentence=Access 1-wire temperature sensors, memory and other chips.
paragraph=
category=Communication
url=http://www.pjrc.com/teensy/td_libs_OneWire.html
architectures=*

View File

@ -0,0 +1,420 @@
#ifndef OneWire_Direct_GPIO_h
#define OneWire_Direct_GPIO_h
// This header should ONLY be included by OneWire.cpp. These defines are
// meant to be private, used within OneWire.cpp, but not exposed to Arduino
// sketches or other libraries which may include OneWire.h.
#include <stdint.h>
// Platform specific I/O definitions
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR asm("r30")
#define IO_REG_MASK_ATTR
#if defined(__AVR_ATmega4809__)
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)-8)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)-8)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)-4)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)-4)) |= (mask))
#else
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#endif
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR __attribute__ ((unused))
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__MKL26Z64__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) ((*((base)+2) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+1) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+1) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+34) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+33) = (mask))
#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#elif defined(ARDUINO_ARCH_ESP8266)
// Special note: I depend on the ESP community to maintain these definitions and
// submit good pull requests. I can not answer any ESP questions or help you
// resolve any problems related to ESP chips. Please do not contact me and please
// DO NOT CREATE GITHUB ISSUES for ESP support. All ESP questions must be asked
// on ESP community forums.
#define PIN_TO_BASEREG(pin) ((volatile uint32_t*) GPO)
#define PIN_TO_BITMASK(pin) (1 << pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) ((GPI & (mask)) ? 1 : 0) //GPIO_IN_ADDRESS
#define DIRECT_MODE_INPUT(base, mask) (GPE &= ~(mask)) //GPIO_ENABLE_W1TC_ADDRESS
#define DIRECT_MODE_OUTPUT(base, mask) (GPE |= (mask)) //GPIO_ENABLE_W1TS_ADDRESS
#define DIRECT_WRITE_LOW(base, mask) (GPOC = (mask)) //GPIO_OUT_W1TC_ADDRESS
#define DIRECT_WRITE_HIGH(base, mask) (GPOS = (mask)) //GPIO_OUT_W1TS_ADDRESS
#elif defined(ARDUINO_ARCH_ESP32)
#include <driver/rtc_io.h>
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(IO_REG_TYPE pin)
{
if ( pin < 32 )
return (GPIO.in >> pin) & 0x1;
else if ( pin < 40 )
return (GPIO.in1.val >> (pin - 32)) & 0x1;
return 0;
}
static inline __attribute__((always_inline))
void directWriteLow(IO_REG_TYPE pin)
{
if ( pin < 32 )
GPIO.out_w1tc = ((uint32_t)1 << pin);
else if ( pin < 34 )
GPIO.out1_w1tc.val = ((uint32_t)1 << (pin - 32));
}
static inline __attribute__((always_inline))
void directWriteHigh(IO_REG_TYPE pin)
{
if ( pin < 32 )
GPIO.out_w1ts = ((uint32_t)1 << pin);
else if ( pin < 34 )
GPIO.out1_w1ts.val = ((uint32_t)1 << (pin - 32));
}
static inline __attribute__((always_inline))
void directModeInput(IO_REG_TYPE pin)
{
if ( digitalPinIsValid(pin) )
{
uint32_t rtc_reg(rtc_gpio_desc[pin].reg);
if ( rtc_reg ) // RTC pins PULL settings
{
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].mux);
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].pullup | rtc_gpio_desc[pin].pulldown);
}
if ( pin < 32 )
GPIO.enable_w1tc = ((uint32_t)1 << pin);
else
GPIO.enable1_w1tc.val = ((uint32_t)1 << (pin - 32));
uint32_t pinFunction((uint32_t)2 << FUN_DRV_S); // what are the drivers?
pinFunction |= FUN_IE; // input enable but required for output as well?
pinFunction |= ((uint32_t)2 << MCU_SEL_S);
ESP_REG(DR_REG_IO_MUX_BASE + esp32_gpioMux[pin].reg) = pinFunction;
GPIO.pin[pin].val = 0;
}
}
static inline __attribute__((always_inline))
void directModeOutput(IO_REG_TYPE pin)
{
if ( digitalPinIsValid(pin) && pin <= 33 ) // pins above 33 can be only inputs
{
uint32_t rtc_reg(rtc_gpio_desc[pin].reg);
if ( rtc_reg ) // RTC pins PULL settings
{
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].mux);
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].pullup | rtc_gpio_desc[pin].pulldown);
}
if ( pin < 32 )
GPIO.enable_w1ts = ((uint32_t)1 << pin);
else // already validated to pins <= 33
GPIO.enable1_w1ts.val = ((uint32_t)1 << (pin - 32));
uint32_t pinFunction((uint32_t)2 << FUN_DRV_S); // what are the drivers?
pinFunction |= FUN_IE; // input enable but required for output as well?
pinFunction |= ((uint32_t)2 << MCU_SEL_S);
ESP_REG(DR_REG_IO_MUX_BASE + esp32_gpioMux[pin].reg) = pinFunction;
GPIO.pin[pin].val = 0;
}
}
#define DIRECT_READ(base, pin) directRead(pin)
#define DIRECT_WRITE_LOW(base, pin) directWriteLow(pin)
#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(pin)
#define DIRECT_MODE_INPUT(base, pin) directModeInput(pin)
#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(pin)
// https://github.com/PaulStoffregen/OneWire/pull/47
// https://github.com/stickbreaker/OneWire/commit/6eb7fc1c11a15b6ac8c60e5671cf36eb6829f82c
#ifdef interrupts
#undef interrupts
#endif
#ifdef noInterrupts
#undef noInterrupts
#endif
#define noInterrupts() {portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;portENTER_CRITICAL(&mux)
#define interrupts() portEXIT_CRITICAL(&mux);}
//#warning "ESP32 OneWire testing"
#elif defined(ARDUINO_ARCH_STM32)
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) ((uint32_t)digitalPinToPinName(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, pin) digitalReadFast((PinName)pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWriteFast((PinName)pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWriteFast((PinName)pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pin_function((PinName)pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0))
#define DIRECT_MODE_OUTPUT(base, pin) pin_function((PinName)pin, STM_PIN_DATA(STM_MODE_OUTPUT_PP, GPIO_NOPULL, 0))
#elif defined(__SAMD21G18A__)
#define PIN_TO_BASEREG(pin) portModeRegister(digitalPinToPort(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) (((*((base)+8)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+2)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+6)) = (mask))
#elif defined(RBL_NRF51822)
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, pin) nrf_gpio_pin_read(pin)
#define DIRECT_WRITE_LOW(base, pin) nrf_gpio_pin_clear(pin)
#define DIRECT_WRITE_HIGH(base, pin) nrf_gpio_pin_set(pin)
#define DIRECT_MODE_INPUT(base, pin) nrf_gpio_cfg_input(pin, NRF_GPIO_PIN_NOPULL)
#define DIRECT_MODE_OUTPUT(base, pin) nrf_gpio_cfg_output(pin)
#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
#include "scss_registers.h"
#include "portable.h"
#include "avr/pgmspace.h"
#define GPIO_ID(pin) (g_APinDescription[pin].ulGPIOId)
#define GPIO_TYPE(pin) (g_APinDescription[pin].ulGPIOType)
#define GPIO_BASE(pin) (g_APinDescription[pin].ulGPIOBase)
#define DIR_OFFSET_SS 0x01
#define DIR_OFFSET_SOC 0x04
#define EXT_PORT_OFFSET_SS 0x0A
#define EXT_PORT_OFFSET_SOC 0x50
/* GPIO registers base address */
#define PIN_TO_BASEREG(pin) ((volatile uint32_t *)g_APinDescription[pin].ulGPIOBase)
#define PIN_TO_BITMASK(pin) pin
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
IO_REG_TYPE ret;
if (SS_GPIO == GPIO_TYPE(pin)) {
ret = READ_ARC_REG(((IO_REG_TYPE)base + EXT_PORT_OFFSET_SS));
} else {
ret = MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, EXT_PORT_OFFSET_SOC);
}
return ((ret >> GPIO_ID(pin)) & 0x01);
}
static inline __attribute__((always_inline))
void directModeInput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG((((IO_REG_TYPE)base) + DIR_OFFSET_SS)) & ~(0x01 << GPIO_ID(pin)),
((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
} else {
MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) &= ~(0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directModeOutput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(((IO_REG_TYPE)(base) + DIR_OFFSET_SS)) | (0x01 << GPIO_ID(pin)),
((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
} else {
MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) |= (0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directWriteLow(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(base) & ~(0x01 << GPIO_ID(pin)), base);
} else {
MMIO_REG_VAL(base) &= ~(0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directWriteHigh(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(base) | (0x01 << GPIO_ID(pin)), base);
} else {
MMIO_REG_VAL(base) |= (0x01 << GPIO_ID(pin));
}
}
#define DIRECT_READ(base, pin) directRead(base, pin)
#define DIRECT_MODE_INPUT(base, pin) directModeInput(base, pin)
#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(base, pin)
#define DIRECT_WRITE_LOW(base, pin) directWriteLow(base, pin)
#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(base, pin)
#elif defined(__riscv)
/*
* Tested on highfive1
*
* Stable results are achieved operating in the
* two high speed modes of the highfive1. It
* seems to be less reliable in slow mode.
*/
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) digitalPinToBitMask(pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(IO_REG_TYPE mask)
{
return ((GPIO_REG(GPIO_INPUT_VAL) & mask) != 0) ? 1 : 0;
}
static inline __attribute__((always_inline))
void directModeInput(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_XOR) &= ~mask;
GPIO_REG(GPIO_IOF_EN) &= ~mask;
GPIO_REG(GPIO_INPUT_EN) |= mask;
GPIO_REG(GPIO_OUTPUT_EN) &= ~mask;
}
static inline __attribute__((always_inline))
void directModeOutput(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_XOR) &= ~mask;
GPIO_REG(GPIO_IOF_EN) &= ~mask;
GPIO_REG(GPIO_INPUT_EN) &= ~mask;
GPIO_REG(GPIO_OUTPUT_EN) |= mask;
}
static inline __attribute__((always_inline))
void directWriteLow(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_VAL) &= ~mask;
}
static inline __attribute__((always_inline))
void directWriteHigh(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_VAL) |= mask;
}
#define DIRECT_READ(base, mask) directRead(mask)
#define DIRECT_WRITE_LOW(base, mask) directWriteLow(mask)
#define DIRECT_WRITE_HIGH(base, mask) directWriteHigh(mask)
#define DIRECT_MODE_INPUT(base, mask) directModeInput(mask)
#define DIRECT_MODE_OUTPUT(base, mask) directModeOutput(mask)
#else
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE unsigned int
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, pin) digitalRead(pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
#endif
#endif

View File

@ -0,0 +1,52 @@
#ifndef OneWire_Direct_RegType_h
#define OneWire_Direct_RegType_h
#include <stdint.h>
// Platform specific I/O register type
#if defined(__AVR__)
#define IO_REG_TYPE uint8_t
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
#define IO_REG_TYPE uint8_t
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
#define IO_REG_TYPE uint32_t
#elif defined(__MKL26Z64__)
#define IO_REG_TYPE uint8_t
#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
#define IO_REG_TYPE uint32_t
#elif defined(__PIC32MX__)
#define IO_REG_TYPE uint32_t
#elif defined(ARDUINO_ARCH_ESP8266)
#define IO_REG_TYPE uint32_t
#elif defined(ARDUINO_ARCH_ESP32)
#define IO_REG_TYPE uint32_t
#define IO_REG_MASK_ATTR
#elif defined(ARDUINO_ARCH_STM32)
#define IO_REG_TYPE uint32_t
#elif defined(__SAMD21G18A__)
#define IO_REG_TYPE uint32_t
#elif defined(RBL_NRF51822)
#define IO_REG_TYPE uint32_t
#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
#define IO_REG_TYPE uint32_t
#elif defined(__riscv)
#define IO_REG_TYPE uint32_t
#else
#define IO_REG_TYPE unsigned int
#endif
#endif

138
src/common.h Normal file
View File

@ -0,0 +1,138 @@
#ifndef _MY_STUFF_H_INCLUDED
#define _MY_STUFF_H_INCLUDED
#include "./DallasTemperature/DallasTemperature.h"
// #include <math.h> // NAN
#define _VERSION_MAJOR 0
#define _VERSION_MINOR 0
#define _VERSION_MICRO 1
#define _VERSION_NUMBER _VERSION_MICRO | (_VERSION_MINOR << 6) | (_VERSION_MAJOR << 12)
#define _VERSION_STRING "v0.0.1"
#define _DEBUG 1
#define _DEBUG_SENSORS 0
#define _MODBUS 1
#if _DEBUG == 1
#define _print(x) Serial.print(x)
#define _println(x) Serial.println(x)
#if _DEBUG_SENSORS == 1
#define _prints(x) Serial.print(x)
#define _printsln(x) Serial.println(x)
#else
#define _prints(x)
#define _printsln(x)
#endif
#else
#define _print(x)
#define _println(x)
#define _prints(x)
#define _printsln(x)
#endif
#define _REGS_INFRONTOF_EVENTS 6
#define _MODBUS_MAX_EVENTS 234 // Ergibt sich aus 0xF0 - 0x06
#if _MODBUS == 1
#include "modbus/ModbusRTUSlave.h"
extern bool timeStampOverflow;
extern unsigned long timeStamp;
extern u8 &valves;
extern u16 &eventCounter;
extern u16 modbusData[];
#define _setModbusValve(index, val)\
if (bitRead(valves, index) != val) {\
bitWrite(valves, index, val);\
bitWrite(modbusData[1], index+8, val);\
if (eventCounter < _MODBUS_MAX_EVENTS) {\
/* Die ersten 12 Bits beinhalten den relativen Zeitstempel in Zehntelsekunden */\
/* Dieser Stempel ist immer 0xFFF, falls schon zuviel Zeit seit der letzten Referenzierung vergangen ist */\
u16 result = (timeStampOverflow) ? 0xFFF : ((millis() - timeStamp) / 100) & 0xFFF;\
/* Die Bits 12...14 beinhalten die Nr des geschalteten Ausgangs */\
result |= index << 12;\
/* Das MSB gibt an, ob der Ausgang ein- oder ausgeschaltet wurde */\
result |= val << 15;\
modbusData[_REGS_INFRONTOF_EVENTS + eventCounter] = result;\
eventCounter++;\
}\
}
#define _setModbusValue(index, val) modbusData[index] = val
#else
#define _setModbusValve(index, val)
#define _setModbusValue(index, val)
#endif // _MODBUS ==
#define _MODBUS_ADDR_MIN 1
#define _MODBUS_ADDR_MAX 247 // Laut QModMaster letzte Adresse
#define _MODBUS_DELAY_MIN 0 // 1/10 Millisekunden
#define _MODBUS_DELAY_MAX 250 // 1/10 Millisekunden
#define _MODBUS_INVALID_BAUDRATE 4294967295
#define _MODBUS_VALVE_T1_INDEX 0
#define _MODBUS_VALVE_T2_INDEX 1
#define _MODBUS_VALVE_PR_INDEX 2
#define _MODBUS_VALVE_PF_INDEX 3
#define _MODBUS_T1_INDEX 2
#define _MODBUS_T2_INDEX 3
#define _MODBUS_P_INDEX 4
#define _SENSOR_FAULT 0xFFFF
#define _STD_TEMP_SETPOINT 400 // Hundertstel
#define _STD_TEMP_HYSTERESIS 10 // Hundertstel
#define _STD_P_SETPOINT 100 // Hundertstel
#define _STD_P_HYSTERESIS 5 // Hundertstel
#define _STD_P_EN_INC 1
#define _STD_P_EN_DEC 1
#define _STD_T_EN 1
#define _STD_C_EN 0
#define _MIN_TEMP_SETPOINT 10 // Hundertstel
#define _MAX_TEMP_SETPOINT 3000 // Hundertstel
#define _MIN_TEMP_HYSTERESIS 1 // Hundertstel
#define _MAX_TEMP_HYSTERESIS 100 // Hundertstel
#define _MIN_P_SETPOINT 0 // Hundertstel
#define _MAX_P_SETPOINT 300 // Hundertstel
#define _MIN_P_HYSTERESIS 1 // Hundertstel
#define _MAX_P_HYSTERESIS 50 // Hundertstel
#define _P_SENSOR_1_5V_0_5BAR 1
#define _P_SENSOR_0_5V_0_6BAR 2
enum PSensor : uint8_t {
SMC_1_5V_0_5BAR=1, // Sensor mit Kabel
GEMS_0_5V_0_6BAR // Sensor mit Würfelstecker
};
struct parameters { // Prozesswerte
int16_t ts1 = _SENSOR_FAULT; // Soll-Temperatur 1 in 1/100 °C
int16_t th1 = _SENSOR_FAULT; // Hysterese für Temperatur 1 (1/100)
int16_t ts2 = _SENSOR_FAULT; // Soll-Temperatur 2 in 1/100 °C
int16_t th2 = _SENSOR_FAULT; // Hysterese für Temperatur 2 (1/100)
int16_t ps = _SENSOR_FAULT; // Druck in bar
int16_t ph = _SENSOR_FAULT; // Hysterese für Druck
uint8_t tEn = 255; // Kühlung (de)aktiviert
uint8_t pInc = 255; // Drucksteigerung (de)aktiviert
uint8_t pDec = 255; // Druckabfall (de)aktiviert
uint8_t cEn = 255; // Controller (de)aktiviert
};
struct values { // aktuelle Messwerte
int16_t t1 = _SENSOR_FAULT; // Temperatur in 1/100 °C
int16_t p = _SENSOR_FAULT; // Druck in 1/100 bar
};
struct modbusParameters { // Parameter für Modbus
uint32_t baudrate = _MODBUS_INVALID_BAUDRATE; // Modbus-Baudrate
uint8_t address = 255; // Modbus-Adresse
uint8_t delay = 255; // delay in 1/10 ms vor der Antwort
};
struct valveStates {
bool t1;
bool t2;
bool pInc;
bool pDec;
};
#endif // _MY_STUFF_H_INCLUDED

View File

@ -0,0 +1,219 @@
#include "controller.h"
Controller::Controller(const uint8_t pAnalaogPin,
const uint8_t oneWirePin,
parameters *p,
values *v,
Display *d,
PSensor *s,
valveStates *vStates,
const uint8_t t1Pin,
const uint8_t t2Pin,
const uint8_t pRisePin,
const uint8_t pFallPin)
: _aPin(pAnalaogPin)
, _oneWire(oneWirePin)
, _params(p)
, _vals(v)
, _display(d)
, _pSensor(s)
, _vStates(vStates)
, _prPin(pRisePin)
, _pfPin(pFallPin)
, _t1Pin(t1Pin)
, _t2Pin(t2Pin)
, _dallas(&_oneWire)
{
pinMode(_prPin, OUTPUT);
pinMode(_pfPin, OUTPUT);
pinMode(_t1Pin, OUTPUT);
pinMode(_t2Pin, OUTPUT);
digitalWrite(_prPin, 0);
digitalWrite(_pfPin, 0);
digitalWrite(_t1Pin, 0);
digitalWrite(_t2Pin, 0);
_vStates->pInc = false;
_vStates->pDec = false;
_vStates->t1 = false;
}
void Controller::init(bool startup=false)
{
_dallas.begin();
_dallas.setWaitForConversion(false);
const uint8_t maxDevices = 1;
uint8_t deviceCount = _dallas.getDS18Count();
if (deviceCount > maxDevices) {
_display->tooMuchOneWireDevicesDetected(deviceCount, maxDevices);
} else if (!deviceCount) {
_display->noOneWireDevicesDetected();
} else {
_initOk = true;
_dallas.getAddress(_tempAddr1, 0);
_dallas.setResolution(12);
if (!startup)
_display->oneWireDevicesDetected(deviceCount);
}
}
void Controller::process()
{
if (_initOk && millis() - _lastConversion > _CONVERSION_DELAY) {
_lastConversion = millis();
_requestConversion = true;
float temp = _dallas.getTempC(_tempAddr1);
if (temp == DEVICE_DISCONNECTED_C)
_vals->t1 = _SENSOR_FAULT;
else
_vals->t1 = temp * 100;
_prints("Temp: "); _prints(_vals->t1);
if (_vals->t1 != _SENSOR_FAULT && _params->tEn && _params->cEn) {
switch (_tState) {
case stateIdle:
_printsln(", case stateIdle");
if (_vals->t1 < _params->ts1 - _params->th1) {
_setT1Valve(0, stateRising);
_prints(" -> rising");
} else if (_vals->t1 > _params->ts1 + _params->th1) {
_setT1Valve(1, stateFalling);
_prints(" -> falling");
}
_printsln();
break;
case stateRising:
_prints(", case stateRising");
if (_vals->t1 > _params->ts1 + _params->th1) {
_setT1Valve(1, stateIdle);
_prints(" -> idle");
}
_printsln();
break;
case stateFalling:
_prints(", case stateFalling");
if (_vals->t1 < _params->ts1 - _params->th1) {
_setT1Valve(0, stateIdle);
_prints(" -> idle");
}
_printsln();
break;
}
} else {
_setT1Valve(0, stateIdle);
_printsln();
}
_setModbusValue(_MODBUS_T1_INDEX, _vals->t1);
} else if (_requestConversion) {
_requestConversion = false;
_dallas.requestTemperatures();
}
if (millis() - _lastAnalogRead > _ANALOG_READ_DELAY) {
_lastAnalogRead = millis();
_rawP = analogRead(_aPin);
_prints("_rawP: "); _prints(_rawP);
switch (*_pSensor) {
case SMC_1_5V_0_5BAR:
float p = (float) _rawP / 2.046f; // 1023 / 5 * 100 (0-5 1/100 bar)
p = (p - 1) * 1.25f; // 1...5 V Sensor
_prints(" (Gems), p: "); _prints(p);
if (p < -0.5f) // Sensor ist definitiv nicht angeschlossen
_vals->p = _SENSOR_FAULT;
else if (p < 0) // Bei kleiner Toleranz ein bisschen schwindeln ;-)
_vals->p = 0;
else
_vals->p = p;
break;
case GEMS_0_5V_0_6BAR:
_vals->p = (float) _rawP / 1.705f; // 1023 / 6 * 100 (0-5 1/100 bar)
_prints(" (Gems), p: "); _prints(_vals->p);
}
_setModbusValue(_MODBUS_P_INDEX, _vals->p);
if (_vals->p != _SENSOR_FAULT && _params->cEn) {
switch (_pState) {
case stateIdle:
_prints(", case stateIdle");
if (_vals->p < _params->ps - _params->ph) {
if (_params->pInc) {
_printsln(" -> stateRising");
_setPValves(stateRising);
} else {
_printsln();
_setPValves(stateIdle);
}
} else if (_vals->p > _params->ps + _params->ph) {
if (_params->pDec) {
_printsln(" -> stateFalling");
_setPValves(stateFalling);
} else {
_printsln();
_setPValves(stateIdle);
}
} else _printsln();
break;
case stateRising:
_prints(", case stateRising");
if ((_params->pInc && _vals->p > _params->ps) || !_params->pInc) {
_prints(" -> stateIdle");
_setPValves(stateIdle);
}
_printsln();
break;
case stateFalling:
_prints(", case stateFalling");
if ((_params->pDec && _vals->p < _params->ps) || !_params->pDec) {
_prints(" -> stateIdle");
_setPValves(stateIdle);
}
_printsln();
break;
}
} else {
_printsln();
_setPValves(stateIdle);
}
_prints("_vStates->pInc: "); _prints(_vStates->pInc);
_prints(", _vStates->pDec: "); _printsln(_vStates->pDec);
}
}
void Controller::_setT1Valve(uint8_t val, States state)
{
_tState = state;
digitalWrite(_t1Pin, val);
_vStates->t1 = val;
_setModbusValve(_MODBUS_VALVE_T1_INDEX, val);
}
void Controller::_setPValves(States state)
{
_pState = state;
switch (state) {
case stateRising:
digitalWrite(_prPin, 1);
_vStates->pInc = true;
_setModbusValve(_MODBUS_VALVE_PR_INDEX, 1);
digitalWrite(_pfPin, 0);
_vStates->pDec = false;
_setModbusValve(_MODBUS_VALVE_PF_INDEX, 0);
break;
case stateFalling:
digitalWrite(_pfPin, 1);
_vStates->pDec = true;
_setModbusValve(_MODBUS_VALVE_PF_INDEX, 1);
digitalWrite(_prPin, 0);
_vStates->pInc = false;
_setModbusValve(_MODBUS_VALVE_PR_INDEX, 0);
break;
default: // idle valves
digitalWrite(_pfPin, 0);
_vStates->pDec = false;
_setModbusValve(_MODBUS_VALVE_PF_INDEX, 0);
digitalWrite(_prPin, 0);
_vStates->pInc = false;
_setModbusValve(_MODBUS_VALVE_PR_INDEX, 0);
}
}
// uint16_t Controller::_convertFloat(const float &x)
// {
// return (uint16_t) (x * 100);
// }

View File

@ -0,0 +1,66 @@
#ifndef MY_CONTROLLER_H_INCLUDED
#define MY_CONTROLLER_H_INCLUDED
#include "../OneWire/OneWire.h"
#include "../DallasTemperature/DallasTemperature.h"
#include "../display/display.h"
#include "../common.h"
#define _CONVERSION_DELAY 800
#define _ANALOG_READ_DELAY 500
class Controller
{
private:
const uint8_t _aPin;
parameters *_params;
values *_vals;
Display *_display;
PSensor *_pSensor;
valveStates *_vStates;
uint8_t _prPin;
uint8_t _pfPin;
uint8_t _t1Pin;
uint8_t _t2Pin;
OneWire _oneWire;
DallasTemperature _dallas;
DeviceAddress _tempAddr1;
enum States : uint8_t {
stateIdle, stateRising, stateFalling
};
States _tState = stateIdle;
States _pState = stateIdle;
bool _initOk = false;
bool _requestConversion;
unsigned long _lastConversion;
unsigned long _lastAnalogRead;
uint16_t _rawP;
// void _setTState(States curr, States next);
// void _setPState(States curr, States next);
void _setT1Valve(uint8_t, States);
void _setPValves(States);
// uint16_t _convertFloat(const float &x);
public:
Controller(const uint8_t pAnalaogPin,
const uint8_t oneWirePin,
parameters *p,
values *vals,
Display *d,
PSensor *s,
valveStates *vStates,
const uint8_t pRisePin,
const uint8_t t1Pin,
const uint8_t t2Pin,
const uint8_t pFallPin
);
void init(bool startup=false);
void process();
};
#endif // MY_CONTROLLER_H_INCLUDED

753
src/display/display.cpp Normal file
View File

@ -0,0 +1,753 @@
#include <Arduino.h>
#include "../DallasTemperature/DallasTemperature.h"
#include "display.h"
Display::Display(
uint8_t cs,
uint8_t btnNext,
uint8_t btnPrev,
uint8_t btnSelect,
uint8_t btnCancel,
uint8_t bgLED,
parameters *params,
values *vals,
modbusParameters *modbus,
PSensor *sensor,
valveStates *vStates)
: U8G2_ST7920_128X64_2_HW_SPI(U8G2_R0, cs)
, btnNext(btnNext)
, btnPrev(btnPrev)
, btnSelect(btnSelect)
, btnCancel(btnCancel)
, bgLed(bgLED)
, _params(params)
, _vals(vals)
, _modbusParams(modbus)
, _pSensor(sensor)
, _vStates(vStates)
{
}
void Display::process()
{
switch (_event()) {
case _BACK_TO_HOME_SCREEN:
_selection = 0;
_home();
return;
case U8X8_MSG_GPIO_MENU_NEXT:
_nextEvent();
_select();
break;
case U8X8_MSG_GPIO_MENU_PREV:
_prevEvent();
_select();
break;
case U8X8_MSG_GPIO_MENU_SELECT:
if (_selection) {
parameters params;
modbusParameters modbus;
switch (_selection) {
case _MENU_MAIN:
_saveCursorPosForLevel(MenuLevel_1);
switch (_prevCursor) {
case _POS_TEMPERATURE_MENU:
_select(_MENU_TEMPERATURE);
break;
case _POS_PRESSURE_MENU:
_select(_MENU_PRESSURE);
break;
case _POS_SYSTEM:
_restrictInputValue(0, 255);
_select(_VERIFY_ADMIN);
break;
case _POS_RESET:
_select(_SELECTION_RESET);
break;
}
break;
case _MENU_TEMPERATURE:
_saveCursorPosForLevel(MenuLevel_2);
switch (_prevCursor) {
case _POS_TEMPERATURE_ENABLED:
_cursor = _params->tEn;
_select(_SELECTION_TEMPERATURE_ENABLED);
break;
case _POS_TEMPERATURE_SETPOINT:
_val = _params->ts1;
_restrictInputValue(_MIN_TEMP_SETPOINT, _MAX_TEMP_SETPOINT, Precision_2);
_select(_SELECTION_TEMPERATURE_SETPOINT);
break;
case _POS_TEMPERATURE_HYSTERESIS:
_val = _params->th1;
_restrictInputValue(_MIN_TEMP_HYSTERESIS, _MAX_TEMP_HYSTERESIS, Precision_2);
_select(_SELECTION_TEMPERATURE_HYSTERESIS);
break;
}
break;
case _MENU_PRESSURE:
_saveCursorPosForLevel(MenuLevel_2);
switch (_prevCursor) {
case _POS_PRESSURE_ENABLE_INCREASE:
_cursor = _params->pInc;
_select(_SELECTION_PRESSURE_ENABLE_INCREASE);
break;
case _POS_PRESSURE_ENABLE_DECREASE:
_cursor = _params->pDec;
_select(_SELECTION_PRESSURE_ENABLE_DECREASE);
break;
case _POS_PRESSURE_SETPOINT:
_val = _params->ps;
_restrictInputValue(_MIN_P_SETPOINT, _MAX_P_SETPOINT, Precision_2);
_select(_SELECTION_PRESSURE_SETPOINT);
break;
case _POS_PRESSURE_HYSTERESIS:
_val = _params->ph;
_restrictInputValue(_MIN_P_HYSTERESIS, _MAX_P_HYSTERESIS, Precision_2);
_select(_SELECTION_PRESSURE_HYSTERESIS);
break;
}
break;
case _MENU_SYSTEM:
_saveCursorPosForLevel(MenuLevel_2);
switch (_prevCursor) {
case _POS_MODBUS_MENU:
_select(_MENU_SETTINGS_MODBUS);
break;
case _POS_P_SENSOR_SELECTION:
_cursor = (*_pSensor) - 1;
_select(_SELECTION_P_SENSOR);
break;
}
break;
case _MENU_SETTINGS_MODBUS:
_saveCursorPosForLevel(MenuLevel_3);
switch (_prevCursor) {
case _POS_MODBUS_ADDRESS:
_val = _modbusParams->address;
_restrictInputValue(_MODBUS_ADDR_MIN, _MODBUS_ADDR_MAX);
_select(_SELECTION_MODBUS_ADDRESS);
break;
case _POS_MODBUS_BAUDRATE:
_baudrateCursorPos();
_select(_SELECTION_MODBUS_BAUDRATE);
break;
case _POS_MODBUS_DELAY:
_val = _modbusParams->delay;
_restrictInputValue(_MODBUS_DELAY_MIN, _MODBUS_DELAY_MAX, Precision_1);
_select(_SELECTION_MODBUS_DELAY);
break;
}
break;
case _SELECTION_TEMPERATURE_ENABLED:
params.tEn = _cursor;
setParams(params);
_select(_MENU_TEMPERATURE, true);
break;
case _SELECTION_TEMPERATURE_SETPOINT:
// Serial.print("\n_val : "); Serial.println((float) _val);
// Serial.print("_val / 100: "); Serial.println(((float) _val) / 100);
params.ts1 = _val;
setParams(params);
_select(_MENU_TEMPERATURE, true);
break;
case _SELECTION_TEMPERATURE_HYSTERESIS:
params.th1 = _val;
setParams(params);
_select(_MENU_TEMPERATURE, true);
break;
case _SELECTION_PRESSURE_ENABLE_INCREASE:
params.pInc = _cursor;
setParams(params);
_select(_MENU_PRESSURE, true);
break;
case _SELECTION_PRESSURE_ENABLE_DECREASE:
params.pDec = _cursor;
setParams(params);
_select(_MENU_PRESSURE, true);
break;
case _SELECTION_PRESSURE_SETPOINT:
params.ps = _val;
setParams(params);
_select(_MENU_PRESSURE, true);
break;
case _SELECTION_PRESSURE_HYSTERESIS:
params.ph = _val;
setParams(params);
_select(_MENU_PRESSURE, true);
break;
case _SELECTION_MODBUS_BAUDRATE:
_setModbusBaudrate();
_select(_MENU_SETTINGS_MODBUS, true);
break;
case _SELECTION_MODBUS_ADDRESS:
modbus.address = _val;
setModbusParams(modbus);
_select(_MENU_SETTINGS_MODBUS, true);
break;
case _SELECTION_MODBUS_DELAY:
modbus.delay = _val;
setModbusParams(modbus);
_select(_MENU_SETTINGS_MODBUS, true);
break;
case _SELECTION_P_SENSOR:
switch (_cursor) {
case _POS_P_SMC_1_5V_0_5BAR:
setPSensor(SMC_1_5V_0_5BAR);
break;
case _POS_P_GEMS_0_5V_0_6BAR:
setPSensor(GEMS_0_5V_0_6BAR);
break;
}
_restoreCursor();
_select(_MENU_SYSTEM);
break;
case _VERIFY_ADMIN:
if (_val == _ADMIN_CODE) {
_select(_MENU_SYSTEM);
} else {
_restoreCursor();
_select(_MENU_MAIN);
}
_val = 0;
break;
case _SELECTION_RESET:
if (_cursor == 1) {
reset();
} else {
_restoreCursor();
_select(_MENU_MAIN);
}
break;
}
}
break;
case U8X8_MSG_GPIO_MENU_HOME:
if (_selection) {
_val = 0;
if (!_restoreCursor()) {
_home();
return;
}
switch (_selection) {
case _MENU_MAIN:
_selection = 0;
_home();
return;
case _SELECTION_TEMPERATURE_ENABLED:
case _SELECTION_TEMPERATURE_SETPOINT:
case _SELECTION_TEMPERATURE_HYSTERESIS:
_select(_MENU_TEMPERATURE);
break;
case _SELECTION_PRESSURE_ENABLE_INCREASE:
case _SELECTION_PRESSURE_ENABLE_DECREASE:
case _SELECTION_PRESSURE_SETPOINT:
case _SELECTION_PRESSURE_HYSTERESIS:
_select(_MENU_PRESSURE);
break;
case _MENU_SETTINGS_MODBUS:
case _SELECTION_P_SENSOR:
_select(_MENU_SYSTEM);
break;
case _SELECTION_MODBUS_ADDRESS:
case _SELECTION_MODBUS_BAUDRATE:
case _SELECTION_MODBUS_DELAY:
_select(_MENU_SETTINGS_MODBUS);
break;
default:
_select(_MENU_MAIN);
}
}
break;
}
if (millis() - _prevT > 250) {
_prevT = millis();
if (!_selection) {
_home();
}
}
}
void Display::_select(const uint8_t selection, const bool restoreCursor=false)
{
if (restoreCursor)
_restoreCursor();
_selection = selection;
_select();
}
void Display::_select()
{
setFont(_SEL_FONT);
setFontRefHeightAll();
_inputValueActive = false;
_stepSize = 1;
switch (_selection) {
case _MENU_MAIN:
_menu_depth = 0;
sprintf(_text, "Hauptmenü (%s)", _VERSION_STRING);
_selCnt = my_UserInterfaceSelectionList(&u8g2, _text, _cursor, "Temperatur\nDruck\nSystem\nReset");
break;
case _MENU_TEMPERATURE:
_menu_depth = 1;
_selCnt = my_UserInterfaceSelectionList(&u8g2, "Temperatur", _cursor, "Kühlung de/aktivieren\nSollwert\nHysterese");
break;
case _SELECTION_TEMPERATURE_ENABLED:
_menu_depth = 2;
_selCnt = my_UserInterfaceMessage(&u8g2, "Kühlung", nullptr, "aktivieren", " nein \n ja ", _cursor);
break;
case _SELECTION_TEMPERATURE_SETPOINT:
_menu_depth = 2;
_inputValue(5, "Temperatur\nSollwert", "__float__");
break;
case _SELECTION_TEMPERATURE_HYSTERESIS:
_menu_depth = 2;
_inputValue(5, "Temperatur\nHysterese", "__float__");
break;
case _MENU_PRESSURE:
_menu_depth = 1;
_selCnt = my_UserInterfaceSelectionList(&u8g2, "Druck", _cursor, "Drucksteigerung\nDruckabfall\nSollwert\nHysterese");
break;
case _SELECTION_PRESSURE_ENABLE_INCREASE:
_menu_depth = 2;
_selCnt = my_UserInterfaceMessage(&u8g2, "Drucksteigerung", nullptr, "aktivieren", " nein \n ja ", _cursor);
break;
case _SELECTION_PRESSURE_ENABLE_DECREASE:
_menu_depth = 2;
_selCnt = my_UserInterfaceMessage(&u8g2, "Druckabfall", nullptr, "aktivieren", " nein \n ja ", _cursor);
break;
case _SELECTION_PRESSURE_SETPOINT:
_menu_depth = 2;
_inputValue(5, "Druck\nSollwert", "__float__");
break;
case _SELECTION_PRESSURE_HYSTERESIS:
_menu_depth = 2;
_inputValue(5, "Druck\nHysterese", "__float__");
break;
case _VERIFY_ADMIN:
_menu_depth = 1;
_inputValueActive = true;
sprintf(_text, "%d", _val);
my_UserInterfaceInputValueString(&u8g2, "Systemeinstellungen\nBerechtigung\nnachweisen:", nullptr, _text);
break;
case _MENU_SYSTEM:
_menu_depth = 1;
_selCnt = my_UserInterfaceSelectionList(&u8g2, "System", _cursor, "Modbus\nDrucksensor");
break;
case _MENU_SETTINGS_MODBUS:
_menu_depth = 2;
_selCnt = my_UserInterfaceSelectionList(&u8g2, "Modbus", _cursor, "Adresse\nBaudrate\nAntwort-Delay");
break;
case _SELECTION_MODBUS_BAUDRATE:
_menu_depth = 3;
_selCnt = my_UserInterfaceSelectionList(&u8g2, "Baudrate", _cursor, "300\n1200\n2400\n4800\n9600\n19200\n38400\n57600\n115200");
break;
case _SELECTION_MODBUS_ADDRESS:
_menu_depth = 3;
sprintf(_text, "Dezimal: %d", _val);
_inputValue(1, "Modbus Adresse");
break;
case _SELECTION_MODBUS_DELAY:
_menu_depth = 3;
sprintf(_text, "%d.%.d", _val / 10, _val % 10);
_inputValue(1, "Modbus\nAntwort-Verzögerung\nin Millisekunden");
break;
case _SELECTION_P_SENSOR:
_menu_depth = 2;
_selCnt = my_UserInterfaceSelectionList(&u8g2, "Drucksensor", _cursor, "SMC: 1-5V,0-5 bar\nGems: 0-5V,0-6 bar");
break;
case _SELECTION_RESET:
_menu_depth = 1;
_selCnt = my_UserInterfaceMessage(&u8g2, "Controller neustarten", "--------------------", "Wirklich neustarten?", " nein \n ja ", _cursor);
break;
default:
_menu_depth = 0;
}
}
void Display::_home()
{
// Das Display hat eine Auflösung von 128 x 64 Pixel
// Mit der Schriftart u8g2_font_ncenB10_te stellt \xb0 das °-Zeichen dar
int ts1a = _params->ts1 / 100;
int ts1b = _params->ts1 % 100;
int th1a = _params->th1 / 100;
int th1b = _params->th1 % 100;
int psa = _params->ps / 100;
int psb = _params->ps % 100;
int pha = _params->ph / 100;
int phb = _params->ph % 100;
bool cEn = _params->cEn;
bool tEn = (!cEn) ? false : _params->tEn;
bool pInc = (!cEn) ? false : _params->pInc;
bool pDec = (!cEn) ? false : _params->pDec;
bool pEn = pInc || pDec;
uint8_t pState = (_vStates->pInc) ? 1 : (_vStates->pDec) ? 2 : 0;
bool tState = _vStates->t1;
// %u in sprintf() geht nur bis uint16_t
String baudStr(_modbusParams->baudrate);
firstPage();
do {
setFont(u8g2_font_fub20_tf);
if (_vals->t1 == _SENSOR_FAULT)
sprintf(_text, "--.-- \xb0\C");
else
sprintf(_text, "%d.%.2d \xb0\C", _vals->t1 / 100, _vals->t1 % 100);
drawStr(0, 27, _text);
if (_vals->p == _SENSOR_FAULT)
sprintf(_text, "--.-- bar");
else
sprintf(_text, "%d.%.2d bar", _vals->p / 100, _vals->p % 100);
drawStr(0, 57, _text);
//drawHLine(0, 57, 128);
setFont(u8g2_font_micro_tr);
//setFont(u8g2_font_5x7_tr);
sprintf(_text, "%d.%.2d+-%d.%.2d Regelung %saktiv", ts1a, ts1b, th1a, th1b, (tEn) ? "": "in");
drawStr(0, 5, _text);
sprintf(_text, "%d.%.2d+-%d.%.2d P+ %s P- %s", psa, psb, pha, phb, (pInc) ? "ein": "aus", (pDec) ? "ein": "aus");
drawStr(0, 35, _text);
// sprintf(_text, "Modbus Adr. %u, Baudr. %u", _modbusParams->address, _modbusParams->baudrate);
sprintf(_text, "Modbus Adr. %u, Baudr. %s", _modbusParams->address, baudStr.c_str());
drawStr(0, 64, _text);
if (cEn) {
if (tEn) {
if (tState) {
setFont(u8g2_font_open_iconic_arrow_2x_t);
drawStr(112, 25, "\x58"); // Kreislaufsymbol
}
} else {
setFont(u8g2_font_open_iconic_check_2x_t);
drawStr(112, 25, "\x42"); // X in schwarzem Kreis
}
if (!pEn) {
setFont(u8g2_font_open_iconic_check_2x_t);
drawStr(112, 55, "\x42"); // X in schwarzem Kreis
} else if (pState == 1) {
setFont(u8g2_font_open_iconic_arrow_2x_t);
drawStr(112, 55, "\x4b"); // Pfeil rauf
} else if (pState == 2) {
setFont(u8g2_font_open_iconic_arrow_2x_t);
drawStr(112, 55, "\x48"); // Pfeil runter
}
} else {
setFont(u8g2_font_open_iconic_check_2x_t);
// drawStr(112, 25, "\x42"); // X in schwarzem Kreis
// drawStr(112, 55, "\x42"); // X in schwarzem Kreis
drawStr(112, 22, "\x42"); // X in schwarzem Kreis
drawStr(112, 58, "\x42"); // X in schwarzem Kreis
setFont(u8g2_font_open_iconic_embedded_2x_t);
drawStr(113, 40, "\x4e"); // Power-Symbol
// drawLine(0, 0, 128, 64);
// drawLine(128, 0, 0, 64);
}
} while (nextPage());
}
void Display::init()
{
pinMode(bgLed, OUTPUT);
digitalWrite(bgLed, true);
begin(btnSelect, btnNext, btnPrev, U8X8_PIN_NONE, U8X8_PIN_NONE, btnCancel);
}
void Display::modbusProblem()
{
firstPage();
do {
setFont(_STD_FONT);
uint8_t y = _FIRS_LINE_Y;
drawStr(0, y, "Problem:");
y += _STD_LINEHEIGHT;
drawStr(0, y, "Fehler Modbus");
} while (nextPage());
}
void Display::oneWireDevicesDetected(uint8_t count)
{
setFont(_SEL_FONT);
setFontRefHeightAll();
sprintf(_text, "%u", count);
userInterfaceMessage("OneWire-Sensoren", "Erfolgreich erkannt:", _text, " OK ");
}
void Display::tooMuchOneWireDevicesDetected(uint8_t actual, uint8_t max)
{
setFont(_SEL_FONT);
setFontRefHeightAll();
sprintf(_text, "%u (max: %u)", actual, max);
userInterfaceMessage("Fehler OneWire", "Zu viele Sensoren:", _text, " OK ");
}
void Display::noOneWireDevicesDetected()
{
setFont(_SEL_FONT);
setFontRefHeightAll();
userInterfaceMessage("Fehler OneWire", "Keine Sensoren", "erkannt", " OK ");
}
void Display::greeting()
{
firstPage();
do {
setFont(_STD_FONT);
uint8_t y = _FIRS_LINE_Y;
drawStr(0, y, "Dreher");
y += _STD_LINEHEIGHT;
drawStr(0, y, "Brauanlagen");
} while (nextPage());
}
void Display::bgLight(uint8_t value)
{
_bgLightAnalog = value;
_bgLightBool = (value > 0) ? true : false;
analogWrite(bgLed, value);
}
void Display::bgLight(bool state)
{
_bgLightAnalog = (state) ? 255 : 0;
_bgLightBool = state;
digitalWrite(bgLed, state);
}
bool Display::bgLightIncrease(uint8_t step)
{
_bgLightBool = true;
if (_bgLightAnalog == 255) {
return true;
}
int val = (int) _bgLightAnalog;
if (val + step >= 255) {
_bgLightAnalog = 255;
digitalWrite(bgLed, true);
return true;
} else {
_bgLightAnalog += step;
analogWrite(bgLed, _bgLightAnalog);
}
return false;
}
bool Display::bgLightDecrease(uint8_t step)
{
if (_bgLightAnalog == 0) {
_bgLightBool = false;
return true;
}
int val = (int) _bgLightAnalog;
if (val - step <= 0) {
_bgLightAnalog = 0;
_bgLightBool = false;
digitalWrite(bgLed, false);
return true;
} else {
_bgLightBool = true;
_bgLightAnalog -= step;
analogWrite(bgLed, _bgLightAnalog);
}
return false;
}
uint8_t Display::bgLightAnalog()
{
return _bgLightAnalog;
}
bool Display::bgLightState()
{
return _bgLightBool;
}
void Display::_baudrateCursorPos()
{
switch (_modbusParams->baudrate) {
case 300: _cursor = _POS_BAUDRATE_300; break;
case 1200: _cursor = _POS_BAUDRATE_1200; break;
case 2400: _cursor = _POS_BAUDRATE_2400; break;
case 4800: _cursor = _POS_BAUDRATE_4800; break;
case 19200: _cursor = _POS_BAUDRATE_19200; break;
case 38400: _cursor = _POS_BAUDRATE_38400; break;
case 57600: _cursor = _POS_BAUDRATE_57600; break;
case 115200: _cursor = _POS_BAUDRATE_115200; break;
default: _cursor = _POS_BAUDRATE_9600;
}
}
void Display::_setModbusBaudrate()
{
modbusParameters params;
switch (_cursor) {
case _POS_BAUDRATE_300: params.baudrate = 300; break;
case _POS_BAUDRATE_1200: params.baudrate = 1200; break;
case _POS_BAUDRATE_2400: params.baudrate = 2400; break;
case _POS_BAUDRATE_4800: params.baudrate = 4800; break;
case _POS_BAUDRATE_19200: params.baudrate = 19200; break;
case _POS_BAUDRATE_38400: params.baudrate = 38400; break;
case _POS_BAUDRATE_57600: params.baudrate = 57600; break;
case _POS_BAUDRATE_115200: params.baudrate = 115200; break;
default: params.baudrate = 9600;
}
setModbusParams(params);
}
uint8_t Display::_event()
{
uint8_t event = getMenuEvent();
if (event)
return event;
bool next = !digitalRead(btnNext);
bool prev = !digitalRead(btnPrev);
bool cancel = !digitalRead(btnCancel);
if (next || prev || cancel) {
if (millis() - _checkFastStepTime > _BEGIN_FAST_STEPS_DELAY) {
if (millis() - _lastFastStep > _FAST_STEP_MS) {
_lastFastStep = millis();
if (next)
event = U8X8_MSG_GPIO_MENU_NEXT;
else if (prev)
event = U8X8_MSG_GPIO_MENU_PREV;
else if (cancel)
event = _BACK_TO_HOME_SCREEN;
if (millis() - _checkFastStepTime > _BEGIN_BIG_STEPS_DELAY)
_enableBigSteps = true;
}
}
} else {
_checkFastStepTime = millis();
_enableBigSteps = false;
}
return event;
}
void Display::_nextEvent()
{
if (_selection) {
if (_inputValueActive) {
if (_val > _valMin) {
int step = (_enableBigSteps) ? _BIG_STEP * _stepSize : _stepSize;
if (_val - step > _valMin)
_val -= step;
else
_val = _valMin;
}
} else {
_cursor++;
if (_cursor >= _selCnt) {
_cursor = 0;
}
}
} else {
_selection = _MENU_MAIN;
}
}
void Display::_prevEvent()
{
if (_selection) {
if (_inputValueActive) {
if (_val < _valMax) {
int step = (_enableBigSteps) ? _BIG_STEP * _stepSize : _stepSize;
if (_val < step)
_val = step;
else if (_val + step < _valMax)
_val += step;
else
_val = _valMax;
}
} else {
if (_cursor == 0) {
_cursor = _selCnt;
}
_cursor--;
}
} else {
_selection = _MENU_MAIN;
}
}
void Display::_saveCursorPosForLevel(MenuLevel level)
{
switch (level) {
case MenuLevel_1:
_cur_l1 = _cursor;
break;
case MenuLevel_2:
_cur_l2 = _cursor;
break;
case MenuLevel_3:
_cur_l3 = _cursor;
break;
}
_prevCursor = _cursor;
_cursor = 0;
}
void Display::_restrictInputValue(int min, int max, Precision p=Precision_0)
{
char s1[10];
char s2[10];
switch (p) {
case Precision_1:
if (min % 10 == 0)
sprintf(s1, "%d", min / 10);
else
sprintf(s1, "%d.%.1d", min / 10, min % 10);
if (max % 10 == 0)
sprintf(s2, "%d", max / 10);
else
sprintf(s2, "%d.%.1d", max / 10, max % 10);
break;
case Precision_2:
if (min % 100 == 0)
sprintf(s1, "%d", min / 100);
else
sprintf(s1, "%d.%.2d", min / 100, min % 100);
if (max % 100 == 0)
sprintf(s2, "%d", max / 100);
else
sprintf(s2, "%d.%.2d", max / 100, max % 100);
break;
default:
sprintf(s1, "%d", min);
sprintf(s2, "%d", max);
}
_valMin = min;
_valMax = max;
sprintf(_text2, "min: %s, max: %s", s1, s2);
}
void Display::_inputValue(const uint8_t stepSize, const char *title, const char *val=nullptr, const char *text=nullptr)
{
if (!val) {
val = _text;
} else if (val == "__float__") {
sprintf(_text, "%d.%.2d", _val / 100, _val % 100);
val = _text;
}
if (!text)
text = _text2;
_inputValueActive = true;
_stepSize = stepSize;
my_UserInterfaceInputValueString(&u8g2, title, text, val);
}
uint8_t Display::_restoreCursor()
{
switch (_menu_depth) {
case 1:
_cursor = _cur_l1;
break;
case 2:
_cursor = _cur_l2;
break;
case 3:
_cursor = _cur_l3;
break;
default:
_cursor = 0;
_selection = 0;
}
return _menu_depth;
}

178
src/display/display.h Normal file
View File

@ -0,0 +1,178 @@
#ifndef MY_DISPLAY_H_INCLUDED
#define MY_DISPLAY_H_INCLUDED
#include <U8g2lib.h>
#include "../common.h"
//#define _STD_FONT u8g2_font_ncenB10_te
//#define _FIRS_LINE_Y 11
//#define _STD_LINEHEIGHT 12
#define _STD_FONT u8g2_font_fub11_tf
#define _FIRS_LINE_Y 12
#define _STD_LINEHEIGHT 13
#define _SEL_FONT u8g2_font_6x10_tf
#define _FIRS_LINE_Y 12
#define _STD_LINEHEIGHT 13
// Mit der Schriftart u8g2_font_ncenB10_te stellt \xb0 das °-Zeichen dar
#define _BEGIN_FAST_STEPS_DELAY 500
#define _BEGIN_BIG_STEPS_DELAY 3000
#define _FAST_STEP_MS 50
#define _BIG_STEP 10
#define _BACK_TO_HOME_SCREEN 1
#define _MENU_MAIN 1
#define _MENU_SYSTEM 10
#define _MENU_SETTINGS_MODBUS 11
#define _MENU_TEMPERATURE 12
#define _MENU_PRESSURE 13
#define _SELECTION_TEMPERATURE_ENABLED 100
#define _SELECTION_TEMPERATURE_SETPOINT 101
#define _SELECTION_TEMPERATURE_HYSTERESIS 102
#define _SELECTION_PRESSURE_ENABLE_INCREASE 110
#define _SELECTION_PRESSURE_ENABLE_DECREASE 111
#define _SELECTION_PRESSURE_SETPOINT 115
#define _SELECTION_PRESSURE_HYSTERESIS 116
#define _SELECTION_MODBUS_BAUDRATE 150
#define _SELECTION_MODBUS_ADDRESS 151
#define _SELECTION_MODBUS_DELAY 152
#define _SELECTION_P_SENSOR 200
#define _SELECTION_RESET 255
#define _VERIFY_ADMIN 253
#define _ADMIN_CODE 42
#define _POS_TEMPERATURE_MENU 0
#define _POS_TEMPERATURE_ENABLED 0
#define _POS_TEMPERATURE_SETPOINT 1
#define _POS_TEMPERATURE_HYSTERESIS 2
#define _POS_PRESSURE_MENU 1
#define _POS_PRESSURE_ENABLE_INCREASE 0
#define _POS_PRESSURE_ENABLE_DECREASE 1
#define _POS_PRESSURE_SETPOINT 2
#define _POS_PRESSURE_HYSTERESIS 3
#define _POS_SYSTEM 2
#define _POS_MODBUS_MENU 0
#define _POS_MODBUS_ADDRESS 0
#define _POS_MODBUS_BAUDRATE 1
#define _POS_MODBUS_DELAY 2
#define _POS_P_SENSOR_SELECTION 1
#define _POS_P_SMC_1_5V_0_5BAR 0
#define _POS_P_GEMS_0_5V_0_6BAR 1
#define _POS_RESET 3
#define _POS_BAUDRATE_300 0
#define _POS_BAUDRATE_1200 1
#define _POS_BAUDRATE_2400 2
#define _POS_BAUDRATE_4800 3
#define _POS_BAUDRATE_9600 4
#define _POS_BAUDRATE_19200 5
#define _POS_BAUDRATE_38400 6
#define _POS_BAUDRATE_57600 7
#define _POS_BAUDRATE_115200 8
extern "C" uint8_t my_UserInterfaceMessage(u8g2_t *u8g2, const char *title1, const char *title2, const char *title3, const char *buttons, uint8_t cursor);
extern "C" uint8_t my_UserInterfaceSelectionList(u8g2_t *u8g2, const char *title, uint8_t start_pos, const char *sl);
// extern "C" void my_UserInterfaceInputValue(u8g2_t *u8g2, const char *title, const char *pre, uint8_t value, uint8_t digits, const char *post);
extern "C" void my_UserInterfaceInputValueString(u8g2_t *u8g2, const char *title, const char *sub, const char *text);
class Display : public U8G2_ST7920_128X64_2_HW_SPI
{
private:
enum MenuLevel : int8_t {
MenuLevel_1, MenuLevel_2, MenuLevel_3
};
enum Precision : int8_t {
Precision_0, Precision_1, Precision_2
};
uint8_t _bgLightAnalog = 255; // Wie stark die Displaybeleuchtung ist
bool _bgLightBool = true; // Ob die Displaybeleuchtung an ist (egal wie stark)
char _text[50]; // Buffer für Texte
char _text2[30]; // Buffer für Texte
uint8_t _selection; // welche Auswahl gerendert werden soll
uint8_t _cursor; // aktuelle Auswahl-Cursorposition
uint8_t _prevCursor; // letzte Auswahl-Cursorposition
uint8_t _cur_l1; // Cursorposition in Ebene 1
uint8_t _cur_l2; // Cursorposition in Ebene 2
uint8_t _cur_l3; // Cursorposition in Ebene 3
uint8_t _menu_depth; // Im wievielten Untermenü man gerade ist
uint8_t _selCnt; // Anzahl der Auswahlmöglichkeiten
bool _inputValueActive; // Ob gerade ein Wert eingegeben wird
int _val; // Der eingegebene Wert
int _valMin; // Der kleinstmögliche einzugebende Wert
int _valMax; // Der größtmögliche einzugebende Wert
unsigned long _prevT;
bool _enableBigSteps; // Ob große Schritte (_BIG_STEP) durchgeführt werden sollen
unsigned long _checkFastStepTime; // letzte Zeit, zu der ein entsprechender Button NICHT gedrückt war
unsigned long _lastFastStep; // letzte Zeit, zu der ein schneller Schritt ausgeführt wurde
int _stepSize; // Um wieviel der entsprechende Wert auf einmal geändert werden soll
// String _str1, _str2;
parameters *_params;
values *_vals;
modbusParameters *_modbusParams;
PSensor *_pSensor;
valveStates *_vStates;
void _saveCursorPosForLevel(MenuLevel);
uint8_t _restoreCursor();
void _baudrateCursorPos();
void _setModbusBaudrate();
void _select();
void _select(const uint8_t, const bool restoreCursor=false);
uint8_t _event();
void _nextEvent();
void _prevEvent();
void _home();
void _inputValue(const uint8_t stepSize, const char *title, const char *text=nullptr, const char *val=nullptr);
void _restrictInputValue(int min, int max, Precision p=Precision_0);
public:
const uint8_t btnNext;
const uint8_t btnPrev;
const uint8_t btnSelect;
const uint8_t btnCancel;
const uint8_t bgLed;
Display(uint8_t cs,
uint8_t btnNext,
uint8_t btnPrev,
uint8_t btnSelect,
uint8_t btnCancel,
uint8_t bgLED,
parameters*,
values*,
modbusParameters*,
PSensor*,
valveStates*);
void init();
void process();
void modbusProblem();
void oneWireDevicesDetected(uint8_t count);
void tooMuchOneWireDevicesDetected(uint8_t actual, uint8_t max);
void noOneWireDevicesDetected();
void greeting();
void bgLight(uint8_t);
void bgLight(int val) {bgLight((uint8_t) val);};
void bgLight(bool);
bool bgLightIncrease(uint8_t step=1);
bool bgLightDecrease(uint8_t step=1);
uint8_t bgLightAnalog();
bool bgLightState();
void (*reset)() = 0;
/* Callback-Funktionen */
void(*setParams)(const parameters&);
void(*setModbusParams)(const modbusParameters&);
void(*setPSensor)(const PSensor&);
};
#endif // MY_DISPLAY_H_INCLUDED

View File

@ -0,0 +1,340 @@
/*
nonblockingUserinterface.cpp
These original files were modified to this file by brunotic:
U8g2/src/clib/u8g2_message.c
U8g2/src/clib/u8g2_selection_list.c
U8g2/src/clib/u8g2_input_value.c
|----------------
| ORIGINAL TEXT:
|----------------
Universal 8bit Graphics Library (https://github.com/olikraus/u8g2/)
Copyright (c) 2016, olikraus@gmail.com
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <U8g2lib.h>
extern "C" {
#define SPACE_BETWEEN_BUTTONS_IN_PIXEL 6
#define SPACE_BETWEEN_TEXT_AND_BUTTONS_IN_PIXEL 3
static uint8_t my_draw_button_line(u8g2_t *u8g2, u8g2_uint_t y, u8g2_uint_t w, uint8_t cursor, const char *s)
{
u8g2_uint_t button_line_width;
uint8_t i;
uint8_t cnt;
uint8_t is_invert;
u8g2_uint_t d;
u8g2_uint_t x;
cnt = u8x8_GetStringLineCnt(s);
/* calculate the width of the button line */
button_line_width = 0;
for( i = 0; i < cnt; i++ ) {
button_line_width += u8g2_GetUTF8Width(u8g2, u8x8_GetStringLineStart(i, s));
}
button_line_width += (cnt-1)*SPACE_BETWEEN_BUTTONS_IN_PIXEL; /* add some space between the buttons */
/* calculate the left offset */
d = 0;
if ( button_line_width < w ) {
d = w;
d -= button_line_width;
d /= 2;
}
/* draw the buttons */
x = d;
for( i = 0; i < cnt; i++ ) {
is_invert = 0;
if ( i == cursor )
is_invert = 1;
u8g2_DrawUTF8Line(u8g2, x, y, 0, u8x8_GetStringLineStart(i, s), 1, is_invert);
x += u8g2_GetUTF8Width(u8g2, u8x8_GetStringLineStart(i, s));
x += SPACE_BETWEEN_BUTTONS_IN_PIXEL;
}
/* return the number of buttons */
return cnt;
}
/*
title1: Multiple lines,separated by '\n'
title2: A single line/string which is terminated by '\0' or '\n' . "title2" accepts the return value from u8x8_GetStringLineStart()
title3: Multiple lines,separated by '\n'
buttons: one more more buttons separated by '\n' and terminated with '\0'
cursor: highlighted cursor position
returns the number of buttons
side effects:
u8g2_SetFontDirection(u8g2, 0);
u8g2_SetFontPosBaseline(u8g2);
*/
uint8_t my_UserInterfaceMessage(u8g2_t *u8g2, const char *title1, const char *title2, const char *title3, const char *buttons, uint8_t cursor)
{
uint8_t height;
uint8_t line_height;
u8g2_uint_t pixel_height;
u8g2_uint_t y, yy;
uint8_t button_cnt;
/* only horizontal strings are supported, so force this here */
u8g2_SetFontDirection(u8g2, 0);
/* force baseline position */
u8g2_SetFontPosBaseline(u8g2);
/* calculate line height */
line_height = u8g2_GetAscent(u8g2);
line_height -= u8g2_GetDescent(u8g2);
/* calculate overall height of the message box in lines*/
height = 1; /* button line */
height += u8x8_GetStringLineCnt(title1);
if ( title2 != NULL )
height++;
height += u8x8_GetStringLineCnt(title3);
/* calculate the height in pixel */
pixel_height = height;
pixel_height *= line_height;
/* ... and add the space between the text and the buttons */
pixel_height += SPACE_BETWEEN_TEXT_AND_BUTTONS_IN_PIXEL;
/* calculate offset from top */
y = 0;
if ( pixel_height < u8g2_GetDisplayHeight(u8g2) ) {
y = u8g2_GetDisplayHeight(u8g2);
y -= pixel_height;
y /= 2;
}
y += u8g2_GetAscent(u8g2);
u8g2_FirstPage(u8g2);
do {
yy = y;
/* draw message box */
yy += u8g2_DrawUTF8Lines(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), line_height, title1);
if ( title2 != NULL ) {
u8g2_DrawUTF8Line(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), title2, 0, 0);
yy+=line_height;
}
yy += u8g2_DrawUTF8Lines(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), line_height, title3);
yy += SPACE_BETWEEN_TEXT_AND_BUTTONS_IN_PIXEL;
button_cnt = my_draw_button_line(u8g2, yy, u8g2_GetDisplayWidth(u8g2), cursor, buttons);
} while( u8g2_NextPage(u8g2) );
return button_cnt;
}
#define MY_BORDER_SIZE 1
/*
selection list with string line
returns line height
*/
// static u8g2_uint_t my_draw_selection_list_line(u8g2_t *u8g2, u8sl_t *u8sl, u8g2_uint_t y, uint8_t idx, const char *s) U8G2_NOINLINE;
static u8g2_uint_t my_draw_selection_list_line(u8g2_t *u8g2, u8sl_t *u8sl, u8g2_uint_t y, uint8_t idx, const char *s)
{
u8g2_uint_t yy;
uint8_t border_size = 0;
uint8_t is_invert = 0;
u8g2_uint_t line_height = u8g2_GetAscent(u8g2) - u8g2_GetDescent(u8g2) + MY_BORDER_SIZE;
/* calculate offset from display upper border */
yy = idx;
yy -= u8sl->first_pos;
yy *= line_height;
yy += y;
/* check whether this is the current cursor line */
if ( idx == u8sl->current_pos )
{
border_size = MY_BORDER_SIZE;
is_invert = 1;
}
/* get the line from the array */
s = u8x8_GetStringLineStart(idx, s);
/* draw the line */
if ( s == NULL )
s = "";
u8g2_DrawUTF8Line(u8g2, MY_BORDER_SIZE, y, u8g2_GetDisplayWidth(u8g2) - 2 * MY_BORDER_SIZE, s, border_size, is_invert);
return line_height;
}
static void my_DrawSelectionList(u8g2_t *u8g2, u8sl_t *u8sl, u8g2_uint_t y, const char *s)
{
uint8_t i;
for( i = 0; i < u8sl->visible; i++ )
{
y += my_draw_selection_list_line(u8g2, u8sl, y, i + u8sl->first_pos, s);
}
}
/*
title: NULL for no title, valid str for title line. Can contain mutliple lines, separated by '\n'
start_pos: default position for the cursor, first line is 1.
sl: string list (list of strings separated by \n)
returns the number of options (depending on sl)
side effects:
u8g2_SetFontDirection(u8g2, 0);
u8g2_SetFontPosBaseline(u8g2);
*/
uint8_t my_UserInterfaceSelectionList(u8g2_t *u8g2, const char *title, uint8_t start_pos, const char *sl)
{
u8sl_t u8sl;
u8g2_uint_t yy;
u8g2_uint_t line_height = u8g2_GetAscent(u8g2) - u8g2_GetDescent(u8g2) + MY_BORDER_SIZE;
uint8_t title_lines = u8x8_GetStringLineCnt(title);
uint8_t display_lines;
// if ( start_pos > 0 ) /* issue 112 */
// start_pos--; /* issue 112 */
if ( title_lines > 0 )
{
display_lines = (u8g2_GetDisplayHeight(u8g2) - 3) / line_height;
u8sl.visible = display_lines;
u8sl.visible -= title_lines;
}
else
{
display_lines = u8g2_GetDisplayHeight(u8g2) / line_height;
u8sl.visible = display_lines;
}
u8sl.total = u8x8_GetStringLineCnt(sl);
u8sl.first_pos = 0;
u8sl.current_pos = start_pos;
if ( u8sl.current_pos >= u8sl.total )
u8sl.current_pos = u8sl.total - 1;
if ( u8sl.first_pos + u8sl.visible <= u8sl.current_pos )
u8sl.first_pos = u8sl.current_pos - u8sl.visible + 1;
u8g2_SetFontPosBaseline(u8g2);
u8g2_FirstPage(u8g2);
do {
yy = u8g2_GetAscent(u8g2);
if ( title_lines > 0 )
{
yy += u8g2_DrawUTF8Lines(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), line_height, title);
u8g2_DrawHLine(u8g2, 0, yy-line_height- u8g2_GetDescent(u8g2) + 1, u8g2_GetDisplayWidth(u8g2));
yy += 3;
}
my_DrawSelectionList(u8g2, &u8sl, yy, sl);
} while( u8g2_NextPage(u8g2) );
return u8sl.total;
}
void my_UserInterfaceInputValueString(u8g2_t *u8g2, const char *title, const char *sub, const char *text)
{
uint8_t line_height;
uint8_t height;
u8g2_uint_t pixel_height;
u8g2_uint_t x, y, yy;
u8g2_uint_t pixel_width;
/* only horizontal strings are supported, so force this here */
u8g2_SetFontDirection(u8g2, 0);
/* force baseline position */
u8g2_SetFontPosBaseline(u8g2);
/* calculate line height */
line_height = u8g2_GetAscent(u8g2);
line_height -= u8g2_GetDescent(u8g2);
/* calculate overall height of the input value box */
height = 1; /* value input line */
height += u8x8_GetStringLineCnt(title);
height += u8x8_GetStringLineCnt(sub);
/* calculate the height in pixel */
pixel_height = height;
pixel_height *= line_height;
/* calculate offset from top */
y = 0;
if ( pixel_height < u8g2_GetDisplayHeight(u8g2) )
{
y = u8g2_GetDisplayHeight(u8g2);
y -= pixel_height;
y /= 2;
}
/* calculate offset from left for the label */
x = 0;
pixel_width = u8g2_GetUTF8Width(u8g2, text);
if ( pixel_width < u8g2_GetDisplayWidth(u8g2) ) {
x = u8g2_GetDisplayWidth(u8g2);
x -= pixel_width;
x /= 2;
}
u8g2_FirstPage(u8g2);
do {
yy = y;
yy += u8g2_DrawUTF8Lines(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), line_height, title);
yy += u8g2_DrawUTF8Lines(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), line_height, sub);
u8g2_DrawUTF8(u8g2, x, yy, text);
} while( u8g2_NextPage(u8g2) );
}
// void my_UserInterfaceInputValue(u8g2_t *u8g2, const char *title, const char *pre, uint8_t value, uint8_t digits, const char *post)
// {
// uint8_t line_height;
// uint8_t height;
// u8g2_uint_t pixel_height;
// u8g2_uint_t y, yy;
// u8g2_uint_t pixel_width;
// u8g2_uint_t x, xx;
// /* only horizontal strings are supported, so force this here */
// u8g2_SetFontDirection(u8g2, 0);
// /* force baseline position */
// u8g2_SetFontPosBaseline(u8g2);
// /* calculate line height */
// line_height = u8g2_GetAscent(u8g2);
// line_height -= u8g2_GetDescent(u8g2);
// /* calculate overall height of the input value box */
// height = 1; /* value input line */
// height += u8x8_GetStringLineCnt(title);
// /* calculate the height in pixel */
// pixel_height = height;
// pixel_height *= line_height;
// /* calculate offset from top */
// y = 0;
// if ( pixel_height < u8g2_GetDisplayHeight(u8g2) )
// {
// y = u8g2_GetDisplayHeight(u8g2);
// y -= pixel_height;
// y /= 2;
// }
// /* calculate offset from left for the label */
// x = 0;
// pixel_width = u8g2_GetUTF8Width(u8g2, pre);
// pixel_width += u8g2_GetUTF8Width(u8g2, "0") * digits;
// pixel_width += u8g2_GetUTF8Width(u8g2, post);
// if ( pixel_width < u8g2_GetDisplayWidth(u8g2) ) {
// x = u8g2_GetDisplayWidth(u8g2);
// x -= pixel_width;
// x /= 2;
// }
// u8g2_FirstPage(u8g2);
// do {
// yy = y;
// yy += u8g2_DrawUTF8Lines(u8g2, 0, yy, u8g2_GetDisplayWidth(u8g2), line_height, title);
// xx = x;
// xx += u8g2_DrawUTF8(u8g2, xx, yy, pre);
// xx += u8g2_DrawUTF8(u8g2, xx, yy, u8x8_u8toa(value, digits));
// u8g2_DrawUTF8(u8g2, xx, yy, post);
// } while( u8g2_NextPage(u8g2) );
// }
} //extern "C"

674
src/modbus/LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -0,0 +1,491 @@
#include "ModbusRTUSlave.h"
#include "utility/LinkedList.h"
ModbusRTUSlave::ModbusRTUSlave(HardwareSerial* serialport, const uint8_t controlPinArg)
: ser(serialport)
, controlPin(controlPinArg)
, isReading(true)
, rWords(new wordsList())
, rBits(new bitsList())
, rwWords(new wordsList())
, rwBits(new bitsList())
{
pinMode(controlPin, OUTPUT);
digitalWrite(controlPin, LOW);
}
void ModbusRTUSlave::begin(byte address, uint32_t baudrate)
{
if (connected) {
ser->end();
}
slaveAddress = address;
ser->begin(baudrate);
ResCnt=0;
connected = true;
}
void ModbusRTUSlave::end()
{
if (connected) {
ser->end();
connected = false;
}
}
bool ModbusRTUSlave::addCoilArea(u16 address, u8* values, int cnt)
{
if(getBitAddress(rwBits, address)==NULL)
{
rwBits->add(new ModbusRTUSlaveBitAddress(address, values, cnt));
return true;
}
return false;
}
bool ModbusRTUSlave::addDiscreteInputArea(u16 address, u8* values, int cnt)
{
if(getBitAddress(rBits, address)==NULL)
{
rBits->add(new ModbusRTUSlaveBitAddress(address, values, cnt));
return true;
}
return false;
}
bool ModbusRTUSlave::addHoldingRegisterArea(u16 address, u16* values, int cnt)
{
if(getWordAddress(rwWords, address)==NULL)
{
rwWords->add(new ModbusRTUSlaveWordAddress(address, values, cnt));
return true;
}
return false;
}
bool ModbusRTUSlave::addInputRegisterArea(u16 address, u16* values, int cnt)
{
if(getWordAddress(rWords, address)==NULL)
{
rWords->add(new ModbusRTUSlaveWordAddress(address, values, cnt));
return true;
}
return false;
}
ModbusRTUSlaveWordAddress* ModbusRTUSlave::getWordAddress(wordsList *words, u16 Addr)
{
ModbusRTUSlaveWordAddress* ret=NULL;
for(int i = 0; i < words->size(); i++)
{
ModbusRTUSlaveWordAddress* a = words->get(i);
if(a!=NULL && Addr >= a->addr && Addr < a->addr + a->len) ret=a;
}
return ret;
}
ModbusRTUSlaveBitAddress* ModbusRTUSlave::getBitAddress(bitsList *bits, u16 Addr)
{
ModbusRTUSlaveBitAddress* ret=NULL;
for(int i = 0; i < bits->size(); i++)
{
ModbusRTUSlaveBitAddress* a = bits->get(i);
if(a!=NULL && Addr >= a->addr && Addr < a->addr + (a->len*8)) ret=a;
}
return ret;
}
ModbusRTUSlaveWordAddress* ModbusRTUSlave::getWordAddress(wordsList *words, u16 Addr, u16 Len)
{
ModbusRTUSlaveWordAddress* ret=NULL;
for(int i = 0; i < words->size(); i++)
{
ModbusRTUSlaveWordAddress* a = words->get(i);
if(a!=NULL && Addr >= a->addr && Addr+Len <= a->addr + a->len) ret=a;
}
return ret;
}
ModbusRTUSlaveBitAddress* ModbusRTUSlave::getBitAddress(bitsList *bits, u16 Addr, u16 Len)
{
ModbusRTUSlaveBitAddress* ret=NULL;
for(int i = 0; i < bits->size(); i++)
{
ModbusRTUSlaveBitAddress* a = bits->get(i);
if(a!=NULL && Addr >= a->addr && Addr+Len <= a->addr + (a->len*8)) ret=a;
}
return ret;
}
void ModbusRTUSlave::process()
{
bool bvalid = true;
while(isDataAvail())
{
byte d = doRead();
lstResponse[ResCnt++]=d;
if(ResCnt>=4)
{
requestedSlave = lstResponse[0];
if(requestedSlave == slaveAddress)
{
fnCode = lstResponse[1];
requestedRegister = (lstResponse[2] << 8) | lstResponse[3];
receivedLastRequest = micros();
switch(fnCode)
{
case 1: // read coils
if(ResCnt >= 8)
{
readCoilOrDiscreteInput(rwBits, bvalid);
}
break;
case 2: // read discrete inputs
if(ResCnt >= 8)
{
readCoilOrDiscreteInput(rBits, bvalid);
}
break;
case 3: // read holding registers
if(ResCnt >= 8)
{
readHoldingOrInputRegister(rwWords, bvalid);
}
break;
case 4: // read input registers
if(ResCnt >= 8)
{
readHoldingOrInputRegister(rWords, bvalid);
}
break;
case 5: // write single coil
if(ResCnt >= 8)
{
u16 Data = (lstResponse[4] << 8) | lstResponse[5];
byte hi = 0xFF, lo = 0xFF;
getCRC(lstResponse,300, 0, 6, &hi, &lo);
ModbusRTUSlaveBitAddress *a = getBitAddress(rwBits, requestedRegister);
if (a != NULL && lstResponse[6] == hi && lstResponse[7] == lo)
{
u16 stidx = (requestedRegister - a->addr) / 8;
bitWrite(a->values[stidx], (requestedRegister - a->addr)%8, Data==0xFF00);
byte ret[8];
ret[0]=requestedSlave;
ret[1]=fnCode;
ret[2]=((requestedRegister&0xFF00)>>8);
ret[3]=((requestedRegister&0x00FF));
ret[4]=((Data&0xFF00)>>8);
ret[5]=((Data&0x00FF));
byte hi = 0xFF, lo = 0xFF;
getCRC(ret, 8, 0, 6, &hi, &lo);
ret[6]=hi;
ret[7]=lo;
doWrite(ret, 8);
ResCnt=0;
}
else bvalid = false;
}
break;
case 6: // write single register
if(ResCnt >= 8)
{
u16 Data = (lstResponse[4] << 8) | lstResponse[5];
byte hi = 0xFF, lo = 0xFF;
getCRC(lstResponse,300, 0, 6, &hi, &lo);
ModbusRTUSlaveWordAddress *a = getWordAddress(rwWords, requestedRegister);
if (a != NULL && lstResponse[6] == hi && lstResponse[7] == lo)
{
u16 stidx = requestedRegister - a->addr;
a->values[stidx] = Data;
byte ret[8];
ret[0]=requestedSlave;
ret[1]=fnCode;
ret[2]=((requestedRegister&0xFF00)>>8);
ret[3]=((requestedRegister&0x00FF));
ret[4]=((Data&0xFF00)>>8);
ret[5]=((Data&0x00FF));
byte hi = 0xFF, lo = 0xFF;
getCRC(ret, 8, 0, 6, &hi, &lo);
ret[6]=hi;
ret[7]=lo;
doWrite(ret, 8);
ResCnt=0;
}
else bvalid = false;
}
break;
case 15: // write multiple coils
if(ResCnt >= 7)
{
u16 Length = (lstResponse[4] << 8) | lstResponse[5];
u8 ByteCount = lstResponse[6];
if(ResCnt >= 9+ByteCount)
{
byte hi = 0xFF, lo = 0xFF;
getCRC(lstResponse,300, 0, 7 + ByteCount, &hi, &lo);
if(lstResponse[(9 + ByteCount - 2)] == hi && lstResponse[(9 + ByteCount - 1)] == lo)
{
ModbusRTUSlaveBitAddress *a = getBitAddress(rwBits, requestedRegister, Length);
if (a != NULL)
{
u16 stidx = (requestedRegister - a->addr) / 8;
int ng=(requestedRegister - a->addr) % 8;
int ns=stidx;
for(int i=7; i<7+ByteCount;i++)
{
byte val = lstResponse[i];
for(int j=0;j<8;j++)
{
bitWrite(a->values[ns], ng++, bitRead(val,j));
if(ng==8){ns++;ng=0;}
}
}
if(bvalid)
{
byte ret[8];
ret[0]=requestedSlave;
ret[1]=fnCode;
ret[2]=((requestedRegister&0xFF00)>>8);
ret[3]=((requestedRegister&0x00FF));
ret[4]=((Length&0xFF00)>>8);
ret[5]=((Length&0x00FF));
byte hi = 0xFF, lo = 0xFF;
getCRC(ret, 8, 0, 6, &hi, &lo);
ret[6]=hi;
ret[7]=lo;
doWrite(ret, 8);
ResCnt=0;
}
}
}
else bvalid=false;
}
}
break;
case 16: // write multiple registers
if(ResCnt >= 7)
{
u16 Length = (lstResponse[4] << 8) | lstResponse[5];
u8 ByteCount = lstResponse[6];
if(ResCnt >= 9+ByteCount)
{
byte hi = 0xFF, lo = 0xFF;
getCRC(lstResponse,300, 0, 7 + ByteCount, &hi, &lo);
if(lstResponse[(9 + ByteCount - 2)] == hi && lstResponse[(9 + ByteCount - 1)] == lo)
{
for(int i=7; i<7+ByteCount;i+=2)
{
u16 data = lstResponse[i] << 8 | lstResponse[i+1];
ModbusRTUSlaveWordAddress *a = getWordAddress(rwWords, requestedRegister + ((i-7)/2));
if (a != NULL) { a->values[(requestedRegister + ((i-7)/2)) - a->addr] = data; }
else { bvalid=false; break; }
}
if(bvalid)
{
byte ret[8];
ret[0]=requestedSlave;
ret[1]=fnCode;
ret[2]=((requestedRegister&0xFF00)>>8);
ret[3]=((requestedRegister&0x00FF));
ret[4]=((Length&0xFF00)>>8);
ret[5]=((Length&0x00FF));
byte hi = 0xFF, lo = 0xFF;
getCRC(ret, 8, 0, 6, &hi, &lo);
ret[6]=hi;
ret[7]=lo;
doWrite(ret, 8);
ResCnt=0;
}
}
else bvalid=false;
}
}
break;
}
}
else bvalid = false;
}
lastrecv = millis();
}
if(!bvalid && ResCnt>0) ResCnt=0;
if(ResCnt>0 && (millis()-lastrecv > 200 || millis() < lastrecv)) ResCnt=0;
}
/*
void ModbusRTUSlave::getCRC(LinkedList<byte>* pby, int startindex, int nSize, byte* byFirstReturn, byte* bySecondReturn)
{
int uIndex;
byte uchCRCHi = 0xff;
byte uchCRCLo = 0xff;
for (int i = startindex; i < startindex + nSize && i<pby->size(); i++)
{
uIndex = uchCRCHi ^ pby->get(i);
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];
uchCRCLo = auchCRCLo[uIndex];
}
(*byFirstReturn) = uchCRCHi;
(*bySecondReturn) = uchCRCLo;
}
*/
void ModbusRTUSlave::getCRC(byte* pby, int arsize, int startindex, int nSize, byte* byFirstReturn, byte* bySecondReturn)
{
int uIndex;
byte uchCRCHi = 0xff;
byte uchCRCLo = 0xff;
for (int i = startindex; i < startindex + nSize && i<arsize; i++)
{
uIndex = uchCRCHi ^ pby[i];
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];
uchCRCLo = auchCRCLo[uIndex];
}
(*byFirstReturn) = uchCRCHi;
(*bySecondReturn) = uchCRCLo;
}
void ModbusRTUSlave::switchToReadingIfNotReadingNow()
{
if (!isReading)
{
ser->flush();
digitalWrite(controlPin, LOW);
isReading = true;
}
}
bool ModbusRTUSlave::isDataAvail()
{
switchToReadingIfNotReadingNow();
return ser->available();
}
int ModbusRTUSlave::doRead()
{
switchToReadingIfNotReadingNow();
return ser->read();
}
void ModbusRTUSlave::doWrite(byte* buffer, int const length)
{
if (isReading)
{
digitalWrite(controlPin, HIGH);
isReading = false;
}
if (waitWithAnswerMicroS) {
unsigned long t = micros() - receivedLastRequest;
if (t < waitWithAnswerMicroS)
delayMicroseconds(waitWithAnswerMicroS - t);
}
ser->write(buffer, length);
}
void ModbusRTUSlave::readCoilOrDiscreteInput(bitsList *bits, bool &valid)
{
u16 Length = (lstResponse[4] << 8) | lstResponse[5];
byte hi = 0xFF, lo = 0xFF;
getCRC(lstResponse,300, 0, 6, &hi, &lo);
ModbusRTUSlaveBitAddress *a = getBitAddress(bits, requestedRegister, Length);
if (Length > 0 && a != NULL && lstResponse[6] == hi && lstResponse[7] == lo)
{
u16 stidx = (requestedRegister - a->addr) / 8;
u16 nlen = ((Length-1) / 8)+1;
byte dat[nlen];
memset(dat,0,nlen);
int ng=(requestedRegister - a->addr) % 8;
int ns=stidx;
for(int i=0;i<nlen;i++)
{
byte val=0;
for(int j=0;j<8;j++)
{
if(bitRead(a->values[ns], ng++)) bitSet(val,j);
if(ng==8){ns++;ng=0;}
}
dat[i]=val;
}
byte ret[3+nlen+2];
ret[0]=requestedSlave;
ret[1]=fnCode;
ret[2]=nlen;
for(int i=0;i<nlen;i++) ret[3+i]=dat[i];
byte hi = 0xFF, lo = 0xFF;
getCRC(ret, 3+nlen+2, 0, 3+nlen, &hi, &lo);
ret[3+nlen]=hi;
ret[3+nlen+1]=lo;
doWrite(ret, 3+nlen+2);
ResCnt=0;
}
else valid = false;
}
void ModbusRTUSlave::readHoldingOrInputRegister(wordsList *words, bool &valid)
{
u16 Length = (lstResponse[4] << 8) | lstResponse[5];
byte hi = 0xFF, lo = 0xFF;
getCRC(lstResponse,300, 0, 6, &hi, &lo);
ModbusRTUSlaveWordAddress *a = getWordAddress(words, requestedRegister, Length);
if (Length > 0 && a != NULL && lstResponse[6] == hi && lstResponse[7] == lo)
{
u16 stidx = requestedRegister - a->addr;
u16 nlen = Length * 2;
byte ret[3+nlen+2];
ret[0]=requestedSlave;
ret[1]=fnCode;
ret[2]=nlen;
for(int i=stidx;i<stidx+Length;i++)
{
ret[3+((i-stidx)*2)+0]=((a->values[i] & 0xFF00) >> 8);
ret[3+((i-stidx)*2)+1]=((a->values[i] & 0xFF));
}
byte hi = 0xFF, lo = 0xFF;
getCRC(ret, 3+nlen+2, 0, 3+nlen, &hi, &lo);
ret[3+nlen]=hi;
ret[3+nlen+1]=lo;
doWrite(ret, 3+nlen+2);
ResCnt=0;
}
else valid = false;
}
bool getBit(u8* area, int index)
{
u16 stidx = index / 8;
return bitRead(area[stidx], index%8);
}
void setBit(u8* area, int index, bool value)
{
u16 stidx = index / 8;
bitWrite(area[stidx], index%8, value);
}
ModbusRTUSlaveBitAddress::ModbusRTUSlaveBitAddress(u16 address, u8* value, int cnt)
{
addr = address;
values = value;
len = cnt;
}
ModbusRTUSlaveWordAddress::ModbusRTUSlaveWordAddress(u16 address, u16* value, int cnt)
{
addr = address;
values = value;
len = cnt;
}

117
src/modbus/ModbusRTUSlave.h Normal file
View File

@ -0,0 +1,117 @@
#ifndef _MODBUS_RTU_SLAVE_H
#define _MODBUS_RTU_SLAVE_H
#include "Arduino.h"
#include "utility/LinkedList.h"
class ModbusRTUSlaveWordAddress
{
public :
u16 addr;
byte len;
u16 *values;
ModbusRTUSlaveWordAddress(u16 Address, u16* value, int cnt);
};
class ModbusRTUSlaveBitAddress
{
public :
u16 addr;
byte len;
u8 *values;
ModbusRTUSlaveBitAddress(u16 Address, u8* value, int cnt);
};
using wordsList = LinkedList<ModbusRTUSlaveWordAddress*>;
using bitsList = LinkedList<ModbusRTUSlaveBitAddress*>;
class ModbusRTUSlave
{
public :
ModbusRTUSlave(HardwareSerial*, const uint8_t);
void begin(byte address, uint32_t baudrate);
void end();
bool addCoilArea(u16 Address, u8* values, int cnt);
bool addDiscreteInputArea(u16 Address, u8* values, int cnt);
bool addHoldingRegisterArea(u16 Address, u16* values, int cnt);
bool addInputRegisterArea(u16 Address, u16* values, int cnt);
void process();
unsigned long waitWithAnswerMicroS = 0;
private:
byte slaveAddress;
byte requestedSlave;
u16 requestedRegister;
bool connected = false;
HardwareSerial * const ser;
u8 const controlPin;
bool isReading;
unsigned long receivedLastRequest;
// LinkedList<ModbusRTUSlaveWordAddress*> *rWords;
// LinkedList<ModbusRTUSlaveBitAddress*> *rBits;
wordsList *rWords;
bitsList *rBits;
wordsList *rwWords;
bitsList *rwBits;
ModbusRTUSlaveWordAddress* getWordAddress(wordsList*, u16 Addr);
ModbusRTUSlaveBitAddress* getBitAddress(bitsList*, u16 Addr);
ModbusRTUSlaveWordAddress* getWordAddress(wordsList*, u16 Addr,u16 Len);
ModbusRTUSlaveBitAddress* getBitAddress(bitsList*, u16 Addr,u16 Len);
byte lstResponse[300];
byte fnCode;
int ResCnt=0;
unsigned long lastrecv;
void getCRC(byte* pby, int arsize, int startindex, int nSize, byte* byFirstReturn, byte* bySecondReturn);
void switchToReadingIfNotReadingNow();
bool isDataAvail();
int doRead();
void doWrite(byte*, int);
void readCoilOrDiscreteInput(bitsList*, bool&);
void readHoldingOrInputRegister(wordsList*, bool&);
};
const byte auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40};
const byte auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40};
bool getBit(u8* area, int index);
void setBit(u8* area, int index, bool value);
#endif

7
src/modbus/README.md Normal file
View File

@ -0,0 +1,7 @@
# ModbusRTU_Slave
This is a modified version of ModbusRTU_Slave_RS485 version 1.0.2 by Łukasz Ślusarczyk <lukasz.slusarczyk@gmail.com>
https://github.com/lucasso/ModbusRTUSlaveArduino
## License
See ./LICENSE file (GNU GPL v3.0 or later)

View File

@ -0,0 +1,112 @@
/*
||
|| @file HashMap.h
|| @version 1.0 Beta
|| @author Alexander Brevig
|| @contact alexanderbrevig@gmail.com
||
|| @description
|| | This library provides a simple interface for storing data with an associate key
|| #
||
|| @license
|| | This library is free software; you can redistribute it and/or
|| | modify it under the terms of the GNU Lesser General Public
|| | License as published by the Free Software Foundation; version
|| | 2.1 of the License.
|| |
|| | This library is distributed in the hope that it will be useful,
|| | but WITHOUT ANY WARRANTY; without even the implied warranty of
|| | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|| | Lesser General Public License for more details.
|| |
|| | You should have received a copy of the GNU Lesser General Public
|| | License along with this library; if not, write to the Free Software
|| | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|| #
||
*/
#ifndef HASHMAP_H
#define HASHMAP_H
#include "Arduino.h"
/* Handle association */
template<typename hash,typename map>
class HashType {
public:
HashType(){ reset(); }
HashType(hash code,map value):hashCode(code),mappedValue(value){}
void reset(){ hashCode = 0; mappedValue = 0; }
hash getHash(){ return hashCode; }
void setHash(hash code){ hashCode = code; }
map getValue(){ return mappedValue; }
void setValue(map value){ mappedValue = value; }
HashType& operator()(hash code, map value){
setHash( code );
setValue( value );
}
private:
hash hashCode;
map mappedValue;
};
/*
Handle indexing and searches
TODO - extend API
*/
template<typename hash, typename map>
class HashMap {
public:
HashMap(HashType<hash,map>* newMap,byte newSize){
hashMap = newMap;
size = newSize;
for (byte i=0; i<size; i++){
hashMap[i].reset();
}
}
HashType<hash,map>& operator[](int x){
//TODO - bounds
return hashMap[x];
}
byte getIndexOf( hash key ){
for (byte i=0; i<size; i++){
if (hashMap[i].getHash()==key){
return i;
}
}
}
map getValueOf( hash key ){
for (byte i=0; i<size; i++){
if (hashMap[i].getHash()==key){
return hashMap[i].getValue();
}
}
}
void debug(){
for (byte i=0; i<size; i++){
Serial.print(hashMap[i].getHash());
Serial.print(" - ");
Serial.println(hashMap[i].getValue());
}
}
private:
HashType<hash,map>* hashMap;
byte size;
};
#endif
/*
|| @changelog
|| | 1.0 2009-07-13 - Alexander Brevig : Initial Release
|| #
*/

View File

@ -0,0 +1,113 @@
/*
||
|| @file HashMap.h
|| @version 1.0 Beta
|| @author Alexander Brevig
|| @contact alexanderbrevig@gmail.com
||
|| @description
|| | This library provides a simple interface for storing data with an associate key
|| #
||
|| @license
|| | This library is free software; you can redistribute it and/or
|| | modify it under the terms of the GNU Lesser General Public
|| | License as published by the Free Software Foundation; version
|| | 2.1 of the License.
|| |
|| | This library is distributed in the hope that it will be useful,
|| | but WITHOUT ANY WARRANTY; without even the implied warranty of
|| | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|| | Lesser General Public License for more details.
|| |
|| | You should have received a copy of the GNU Lesser General Public
|| | License along with this library; if not, write to the Free Software
|| | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|| #
||
*/
#ifndef HASHMAP_H
#define HASHMAP_H
#include "Arduino.h"
/* Handle association */
template<typename hash,typename map>
class HashType {
public:
HashType(){ reset(); }
HashType(hash code,map value):hashCode(code),mappedValue(value){}
void reset(){ hashCode = 0; mappedValue = 0; }
hash getHash(){ return hashCode; }
void setHash(hash code){ hashCode = code; }
map getValue(){ return mappedValue; }
void setValue(map value){ mappedValue = value; }
HashType& operator()(hash code, map value){
setHash( code );
setValue( value );
}
private:
hash hashCode;
map mappedValue;
};
/*
Handle indexing and searches
TODO - extend API
*/
template<typename hash, typename map>
class HashMap {
public:
HashMap(HashType<hash,map>* newMap,byte newSize){
hashMap = newMap;
size = newSize;
for (byte i=0; i<size; i++){
hashMap[i].reset();
}
}
HashType<hash,map>& operator[](int x){
//TODO - bounds
return hashMap[x];
}
byte getIndexOf( hash key ){
for (byte i=0; i<size; i++){
if (hashMap[i].getHash()==key){
return i;
}
}
}
map getValueOf( hash key ){
for (byte i=0; i<size; i++){
if (hashMap[i].getHash()==key){
return hashMap[i].getValue();
}
}
}
void debug(){
for (byte i=0; i<size; i++){
Serial.print(hashMap[i].getHash());
Serial.print(" - ");
Serial.println(hashMap[i].getValue());
}
}
private:
HashType<hash,map>* hashMap;
byte size;
};
#endif
/*
|| @changelog
|| | 1.0 2009-07-13 - Alexander Brevig : Initial Release
|| #
*/

View File

@ -0,0 +1,417 @@
/*
LinkedList.h - V1.1 - Generic LinkedList implementation
Works better with FIFO, because LIFO will need to
search the entire List to find the last one;
For instructions, go to https://github.com/ivanseidel/LinkedList
Created by Ivan Seidel Gomes, March, 2013.
Released into the public domain.
*/
#ifndef LinkedList_h
#define LinkedList_h
#include <stddef.h>
template<class T>
struct ListNode
{
T data;
ListNode<T> *next;
};
template <typename T>
class LinkedList{
protected:
int _size;
ListNode<T> *root;
ListNode<T> *last;
// Helps "get" method, by saving last position
ListNode<T> *lastNodeGot;
int lastIndexGot;
// isCached should be set to FALSE
// everytime the list suffer changes
bool isCached;
ListNode<T>* getNode(int index);
ListNode<T>* findEndOfSortedString(ListNode<T> *p, int (*cmp)(T &, T &));
public:
LinkedList();
LinkedList(int sizeIndex, T _t); //initiate list size and default value
~LinkedList();
/*
Returns current size of LinkedList
*/
virtual int size();
/*
Adds a T object in the specified index;
Unlink and link the LinkedList correcly;
Increment _size
*/
virtual bool add(int index, T);
/*
Adds a T object in the end of the LinkedList;
Increment _size;
*/
virtual bool add(T);
/*
Adds a T object in the start of the LinkedList;
Increment _size;
*/
virtual bool unshift(T);
/*
Set the object at index, with T;
*/
virtual bool set(int index, T);
/*
Remove object at index;
If index is not reachable, returns false;
else, decrement _size
*/
virtual T remove(int index);
/*
Remove last object;
*/
virtual T pop();
/*
Remove first object;
*/
virtual T shift();
/*
Get the index'th element on the list;
Return Element if accessible,
else, return false;
*/
virtual T get(int index);
/*
Clear the entire array
*/
virtual void clear();
/*
Sort the list, given a comparison function
*/
virtual void sort(int (*cmp)(T &, T &));
// add support to array brakets [] operator
inline T& operator[](int index);
inline T& operator[](size_t& i) { return this->get(i); }
inline const T& operator[](const size_t& i) const { return this->get(i); }
};
// Initialize LinkedList with false values
template<typename T>
LinkedList<T>::LinkedList()
{
root=NULL;
last=NULL;
_size=0;
lastNodeGot = root;
lastIndexGot = 0;
isCached = false;
}
// Clear Nodes and free Memory
template<typename T>
LinkedList<T>::~LinkedList()
{
ListNode<T>* tmp;
while(root!=NULL)
{
tmp=root;
root=root->next;
delete tmp;
}
last = NULL;
_size=0;
isCached = false;
}
/*
Actualy "logic" coding
*/
template<typename T>
ListNode<T>* LinkedList<T>::getNode(int index){
int _pos = 0;
ListNode<T>* current = root;
// Check if the node trying to get is
// immediatly AFTER the previous got one
if(isCached && lastIndexGot <= index){
_pos = lastIndexGot;
current = lastNodeGot;
}
while(_pos < index && current){
current = current->next;
_pos++;
}
// Check if the object index got is the same as the required
if(_pos == index){
isCached = true;
lastIndexGot = index;
lastNodeGot = current;
return current;
}
return NULL;
}
template<typename T>
int LinkedList<T>::size(){
return _size;
}
template<typename T>
LinkedList<T>::LinkedList(int sizeIndex, T _t){
for (int i = 0; i < sizeIndex; i++){
add(_t);
}
}
template<typename T>
bool LinkedList<T>::add(int index, T _t){
if(index >= _size)
return add(_t);
if(index == 0)
return unshift(_t);
ListNode<T> *tmp = new ListNode<T>(),
*_prev = getNode(index-1);
tmp->data = _t;
tmp->next = _prev->next;
_prev->next = tmp;
_size++;
isCached = false;
return true;
}
template<typename T>
bool LinkedList<T>::add(T _t){
ListNode<T> *tmp = new ListNode<T>();
tmp->data = _t;
tmp->next = NULL;
if(root){
// Already have elements inserted
last->next = tmp;
last = tmp;
}else{
// First element being inserted
root = tmp;
last = tmp;
}
_size++;
isCached = false;
return true;
}
template<typename T>
bool LinkedList<T>::unshift(T _t){
if(_size == 0)
return add(_t);
ListNode<T> *tmp = new ListNode<T>();
tmp->next = root;
tmp->data = _t;
root = tmp;
_size++;
isCached = false;
return true;
}
template<typename T>
T& LinkedList<T>::operator[](int index) {
return getNode(index)->data;
}
template<typename T>
bool LinkedList<T>::set(int index, T _t){
// Check if index position is in bounds
if(index < 0 || index >= _size)
return false;
getNode(index)->data = _t;
return true;
}
template<typename T>
T LinkedList<T>::pop(){
if(_size <= 0)
return T();
isCached = false;
if(_size >= 2){
ListNode<T> *tmp = getNode(_size - 2);
T ret = tmp->next->data;
delete(tmp->next);
tmp->next = NULL;
last = tmp;
_size--;
return ret;
}else{
// Only one element left on the list
T ret = root->data;
delete(root);
root = NULL;
last = NULL;
_size = 0;
return ret;
}
}
template<typename T>
T LinkedList<T>::shift(){
if(_size <= 0)
return T();
if(_size > 1){
ListNode<T> *_next = root->next;
T ret = root->data;
delete(root);
root = _next;
_size --;
isCached = false;
return ret;
}else{
// Only one left, then pop()
return pop();
}
}
template<typename T>
T LinkedList<T>::remove(int index){
if (index < 0 || index >= _size)
{
return T();
}
if(index == 0)
return shift();
if (index == _size-1)
{
return pop();
}
ListNode<T> *tmp = getNode(index - 1);
ListNode<T> *toDelete = tmp->next;
T ret = toDelete->data;
tmp->next = tmp->next->next;
delete(toDelete);
_size--;
isCached = false;
return ret;
}
template<typename T>
T LinkedList<T>::get(int index){
ListNode<T> *tmp = getNode(index);
return (tmp ? tmp->data : T());
}
template<typename T>
void LinkedList<T>::clear(){
while(size() > 0)
shift();
}
template<typename T>
void LinkedList<T>::sort(int (*cmp)(T &, T &)){
if(_size < 2) return; // trivial case;
for(;;) {
ListNode<T> **joinPoint = &root;
while(*joinPoint) {
ListNode<T> *a = *joinPoint;
ListNode<T> *a_end = findEndOfSortedString(a, cmp);
if(!a_end->next ) {
if(joinPoint == &root) {
last = a_end;
isCached = false;
return;
}
else {
break;
}
}
ListNode<T> *b = a_end->next;
ListNode<T> *b_end = findEndOfSortedString(b, cmp);
ListNode<T> *tail = b_end->next;
a_end->next = NULL;
b_end->next = NULL;
while(a && b) {
if(cmp(a->data, b->data) <= 0) {
*joinPoint = a;
joinPoint = &a->next;
a = a->next;
}
else {
*joinPoint = b;
joinPoint = &b->next;
b = b->next;
}
}
if(a) {
*joinPoint = a;
while(a->next) a = a->next;
a->next = tail;
joinPoint = &a->next;
}
else {
*joinPoint = b;
while(b->next) b = b->next;
b->next = tail;
joinPoint = &b->next;
}
}
}
}
template<typename T>
ListNode<T>* LinkedList<T>::findEndOfSortedString(ListNode<T> *p, int (*cmp)(T &, T &)) {
while(p->next && cmp(p->data, p->next->data) <= 0) {
p = p->next;
}
return p;
}
#endif

510
tank_controller.ino Normal file
View File

@ -0,0 +1,510 @@
#include <EEPROM.h>
#include "src/OneWire/OneWire.h"
#include "src/DallasTemperature/DallasTemperature.h"
#include "src/display/display.h"
#include "src/controller/controller.h"
const uint8_t BTN_PWR = 7;
modbusParameters modbusParams;
parameters params; // Prozessparameter
values vals; // aktuelle Messwerte
PSensor pSensor; // verwendeter Drucksensor
valveStates vStates; // Zustände der Ausgänge
bool paramsChangedByUI; // true, außer ein Wert wurde über Modbus geändert
bool timeStampOverflow = false; // true, wenn mehr als 0xFFF Zehntelsekunden vergangen sind
unsigned long timeStamp;
u16 lastRefTime = 0xFFFF;
#if _MODBUS == 1
#include "src/modbus/ModbusRTUSlave.h"
u8 modbusStates[1]; // Bit0: tEn, Bit1: pInc, Bit2: pDec, Bit3: cEn
u8 modbusValves[1]; // Bit0: Temp1, Bit1: Temp2, Bit2: Druck
// 0: Event-Counter, 1: high: modbusValves[0], low: modbusStates[0], 2...4: Temp 1, 2, Druck, ab5: gespeicherte Schaltvorgänge
u16 modbusData[_REGS_INFRONTOF_EVENTS + _MODBUS_MAX_EVENTS];
u16 modbusMiscReadable[2]; // Version, Kühlzonen
u16 modbusSetpoints[6]; // Temp1, 2, Druck jeweils Sollwert + Hysterese
u16 modbusRefTime[1]; // setzt bei Änderung Event-Counter und -Timer zurück
u8 &states = modbusStates[0];
u8 &valves = modbusValves[0];
u16 &eventCounter = modbusData[0];
u16 &refTime = modbusRefTime[0];
ModbusRTUSlave mb(&Serial1, 2);
void checkParamINT16(int *source, int *target, const int &std, const int &min, const int &max) {
_print("source: "); _print(*source);
if (*source == _SENSOR_FAULT) {
*source = *target = std;
} else if (*source > max) {
*source = *target = max;
} else if (*source < min) {
*source = *target = min;
} else if (*source == min || *source == max) {
*target = *source;
} else {
u8 mod = *source % 5;
_print(", modulo: "); _print(mod);
if (mod == 0)
*target = *source;
else {
int tempVal = *source - mod;
_print(", tempVal: "); _print(tempVal);
if (mod > 2) { // runde auf den nächsten 5er Schritt bzw. setze auf max
if ((tempVal + 5) > max) {
*source = *target = max;
_print(" ... auf max setzen");
} else {
*source = *target = tempVal + 5;
_print(" ... aufrunden");
}
} else { // runde auf den vorigen 5er Schritt bzw. setze auf min
if (tempVal < min) {
*source = *target = min;
_print(" ... auf min setzen");
} else {
*source = *target = tempVal;
_print(" ... abrunden");
}
}
}
}
_print(", target: "); _print(*target); _print(", source: "); _println(*source);
}
void checkParamUINT8(u8 *source, u8 *target, const u8 &std) {
_print("checkParamUINT8 source vorher: "); _print(*source);
if (*source > 1) {
*source = *target = std;
} else {
*target = *source;
}
_print(", target: "); _print(*target); _print(", source: "); _println(*source);
}
void checkParamBool(u8 &p, const u8 &bitNr, u8 *p2=nullptr) {
u8 *p_ = (p2) ? p2 : &p;
if (paramsChangedByUI) {
_print("UI -> Modbus - vorher: "); _print(bitRead(modbusStates[0], bitNr));
bitWrite(modbusStates[0], bitNr, *p_);
_print(", nachher: "); _println(bitRead(modbusStates[0], bitNr));
} else {
_print("Modbus -> UI - vorher: "); _print(*p_);
p = bitRead(modbusStates[0], bitNr);
_print(", nachher: "); _println(p);
}
bitWrite(modbusData[1], bitNr, bitRead(modbusStates[0], bitNr));
}
void checkModbusParams() {
parameters p;
if (modbusSetpoints[0] != params.ts1) {
if (paramsChangedByUI) {
_print("ts1 - UI -> Modbus - ");
checkParamINT16(&params.ts1, &modbusSetpoints[0], _STD_TEMP_SETPOINT, _MIN_TEMP_SETPOINT, _MAX_TEMP_SETPOINT);
} else {
_print("ts1 - Modbus -> UI - ");
checkParamINT16(&modbusSetpoints[0], &params.ts1, _STD_TEMP_SETPOINT, _MIN_TEMP_SETPOINT, _MAX_TEMP_SETPOINT);
p.ts1 = params.ts1;
}
}
if (modbusSetpoints[1] != params.th1) {
if (paramsChangedByUI) {
_print("th1 - UI -> Modbus - ");
checkParamINT16(&params.th1, &modbusSetpoints[1], _STD_TEMP_HYSTERESIS, _MIN_TEMP_HYSTERESIS, _MAX_TEMP_HYSTERESIS);
} else {
_print("th1 - Modbus -> UI - ");
checkParamINT16(&modbusSetpoints[1], &params.th1, _STD_TEMP_HYSTERESIS, _MIN_TEMP_HYSTERESIS, _MAX_TEMP_HYSTERESIS);
p.th1 = params.th1;
}
}
if (modbusSetpoints[4] != params.ps) {
if (paramsChangedByUI) {
_print("ps - UI -> Modbus - ");
checkParamINT16(&params.ps, &modbusSetpoints[4], _STD_P_SETPOINT, _MIN_P_SETPOINT, _MAX_P_SETPOINT);
} else {
_print("ps - Modbus -> UI - ");
checkParamINT16(&modbusSetpoints[4], &params.ps, _STD_P_SETPOINT, _MIN_P_SETPOINT, _MAX_P_SETPOINT);
p.ps = params.ps;
}
}
if (modbusSetpoints[5] != params.ph) {
if (paramsChangedByUI) {
_print("ph - UI -> Modbus - ");
checkParamINT16(&params.ph, &modbusSetpoints[5], _STD_P_HYSTERESIS, _MIN_P_HYSTERESIS, _MAX_P_HYSTERESIS);
} else {
_print("ph - Modbus -> UI - ");
checkParamINT16(&modbusSetpoints[5], &params.ph, _STD_P_HYSTERESIS, _MIN_P_HYSTERESIS, _MAX_P_HYSTERESIS);
p.ph = params.ph;
}
}
u8 bitNr = 0;
if (bitRead(modbusStates[0], bitNr) != params.tEn) {
_print("tEn - ");
checkParamBool(p.tEn, bitNr, &params.tEn);
}
bitNr++;
if (bitRead(modbusStates[0], bitNr) != params.pInc) {
_print("pInc - ");
checkParamBool(p.pInc, bitNr, &params.pInc);
}
bitNr++;
if (bitRead(modbusStates[0], bitNr) != params.pDec) {
_print("pDec - ");
checkParamBool(p.pDec, bitNr, &params.pDec);
}
bitNr++;
if (bitRead(modbusStates[0], bitNr) != params.cEn) {
_print("cEn - ");
checkParamBool(p.cEn, bitNr, &params.cEn);
}
if (!paramsChangedByUI) {
setParams(p);
}
paramsChangedByUI = false;
}
#endif // _MODBUS ==
// EEPROM Adressen:
#define _EEPROM_OFFSET 0 // Falls sich die Register nicht mehr beschreiben lassen
#define _EEPROM_MODBUS_ADDRESS 0 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_MODBUS_BAUDRATE 1 + _EEPROM_OFFSET // 4 bytes
#define _EEPROM_MODBUS_DELAY 5 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_TEMP_SETPOINT 6 + _EEPROM_OFFSET // 4 bytes
#define _EEPROM_TEMP_HYSTERESIS 10 + _EEPROM_OFFSET // 4 bytes
#define _EEPROM_P_SETPOINT 14 + _EEPROM_OFFSET // 4 bytes
#define _EEPROM_P_HYSTERESIS 18 + _EEPROM_OFFSET // 4 bytes
#define _EEPROM_P_EN_INC 22 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_P_EN_DEC 23 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_P_SENSOR 24 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_BG_LIGHT 25 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_T_EN 26 + _EEPROM_OFFSET // 1 byte
#define _EEPROM_CONTROL_EN 27 + _EEPROM_OFFSET // 1 byte
// cs, btnNext, btnPrev, btnSelect, btnCancel, bgLed, Parameter, Messwerte, Modbus, Drucksensor
Display d(10, 3, 4, 5, 6, 9, &params, &vals, &modbusParams, &pSensor, &vStates);
// Analogeingang Druck, OneWire-Pin, Parameter, Messwerte, Display, Drucksensor, Ausgangszustände
// nach vStates: t1Pin, t2Pin, pRisePin, pFallPin
Controller c(A0, 8, &params, &vals, &d, &pSensor, &vStates, 55, 56, 57, 58);
#if _MODBUS == 1
void beginModbus() {
mb.begin(modbusParams.address, modbusParams.baudrate);
mb.waitWithAnswerMicroS = modbusParams.delay * 100; // 1/10 ms -> us
}
#endif
void getParams() {
parameters p;
EEPROM.get(_EEPROM_TEMP_SETPOINT, p.ts1);
EEPROM.get(_EEPROM_TEMP_HYSTERESIS, p.th1);
EEPROM.get(_EEPROM_P_SETPOINT, p.ps);
EEPROM.get(_EEPROM_P_HYSTERESIS, p.ph);
EEPROM.get(_EEPROM_P_EN_INC, p.pInc);
EEPROM.get(_EEPROM_P_EN_DEC, p.pDec);
EEPROM.get(_EEPROM_T_EN, p.tEn);
EEPROM.get(_EEPROM_CONTROL_EN, p.cEn);
_println("getParams() vor Validierung:");
_print(" Temperatur Sollwert: "); _println(p.ts1);
_print(" Temperatur Hysterese: "); _println(p.th1);
_print(" Druck Sollwert: "); _println(p.ps);
_print(" Druck Hysterese: "); _println(p.ph);
_print(" Temp-Regelung aktiv: "); _println(p.tEn);
_print(" Drucksteigerung aktiv: "); _println(p.pInc);
_print(" Druckabfall aktiv: "); _println(p.pDec);
_print(" Regler aktiv: "); _println(p.cEn);
_print("ts1 - UI -> Modbus - ");
checkParamINT16(&p.ts1, &params.ts1, _STD_TEMP_SETPOINT, _MIN_TEMP_SETPOINT, _MAX_TEMP_SETPOINT);
_print("th1 - UI -> Modbus - ");
checkParamINT16(&p.th1, &params.th1, _STD_TEMP_HYSTERESIS, _MIN_TEMP_HYSTERESIS, _MAX_TEMP_HYSTERESIS);
_print("ps - UI -> Modbus - ");
checkParamINT16(&p.ps, &params.ps, _STD_P_SETPOINT, _MIN_P_SETPOINT, _MAX_P_SETPOINT);
_print("ph - UI -> Modbus - ");
checkParamINT16(&p.ph, &params.ph, _STD_P_HYSTERESIS, _MIN_P_HYSTERESIS, _MAX_P_HYSTERESIS);
_print("tEn - ");
checkParamUINT8(&p.tEn, &params.tEn, _STD_T_EN);
_print("pInc - ");
checkParamUINT8(&p.pInc, &params.pInc, _STD_P_EN_INC);
_print("pDec - ");
checkParamUINT8(&p.pDec, &params.pDec, _STD_P_EN_DEC);
_print("cEn - ");
checkParamUINT8(&p.cEn, &params.cEn, _STD_C_EN);
_println("getParams() nach Validierung:");
_print(" Temperatur Sollwert: "); _println(params.ts1);
_print(" Temperatur Hysterese: "); _println(params.th1);
_print(" Druck Sollwert: "); _println(params.ps);
_print(" Druck Hysterese: "); _println(params.ph);
_print(" Temp-Regelung aktiv: "); _println(params.tEn);
_print(" Drucksteigerung aktiv: "); _println(params.pInc);
_print(" Druckabfall aktiv: "); _println(params.pDec);
_print(" Regler aktiv: "); _println(params.cEn);
}
void setParams(parameters &p) {
if (p.ts1 != _SENSOR_FAULT) {
_print("ts1 alt: "); _print(params.ts1); _print(", neu: "); _println(p.ts1);
checkParamINT16(&p.ts1, &params.ts1, _STD_TEMP_SETPOINT, _MIN_TEMP_SETPOINT, _MAX_TEMP_SETPOINT);
EEPROM.put(_EEPROM_TEMP_SETPOINT, params.ts1);
}
if (p.th1 != _SENSOR_FAULT) {
_print("th1 alt: "); _print(params.th1); _print(", neu: "); _println(p.th1);
checkParamINT16(&p.th1, &params.th1, _STD_TEMP_HYSTERESIS, _MIN_TEMP_HYSTERESIS, _MAX_TEMP_HYSTERESIS);
EEPROM.put(_EEPROM_TEMP_HYSTERESIS, params.th1);
}
if (p.ps != _SENSOR_FAULT) {
_print("ps alt: "); _print(params.ps); _print(", neu: "); _println(p.ps);
checkParamINT16(&p.ps, &params.ps, _STD_P_SETPOINT, _MIN_P_SETPOINT, _MAX_P_SETPOINT);
EEPROM.put(_EEPROM_P_SETPOINT, params.ps);
}
if (p.ph != _SENSOR_FAULT) {
_print("ph alt: "); _print(params.ph); _print(", neu: "); _println(p.ph);
checkParamINT16(&p.ph, &params.ph, _STD_P_HYSTERESIS, _MIN_P_HYSTERESIS, _MAX_P_HYSTERESIS);
EEPROM.put(_EEPROM_P_HYSTERESIS, params.ph);
}
if (p.pInc < 2) {
_print("pInc alt: "); _print(params.pInc); _print(", neu: "); _println(p.pInc);
params.pInc = p.pInc;
EEPROM.put(_EEPROM_P_EN_INC, params.pInc);
}
if (p.pDec < 2) {
_print("pDec alt: "); _print(params.pDec); _print(", neu: "); _println(p.pDec);
params.pDec = p.pDec;
EEPROM.put(_EEPROM_P_EN_DEC, params.pDec);
}
if (p.tEn < 2) {
_print("tEn alt: "); _print(params.tEn); _print(", neu: "); _println(p.tEn);
params.tEn = p.tEn;
EEPROM.put(_EEPROM_T_EN, params.tEn);
}
if (p.cEn < 2) {
_print("cEn alt: "); _print(params.cEn); _print(", neu: "); _println(p.cEn);
params.cEn = p.cEn;
EEPROM.put(_EEPROM_CONTROL_EN, params.cEn);
}
paramsChangedByUI = true;
}
void getModbusParams() {
uint8_t addr = EEPROM.read(_EEPROM_MODBUS_ADDRESS);
if (addr < _MODBUS_ADDR_MIN || addr > _MODBUS_ADDR_MAX)
modbusParams.address = _MODBUS_ADDR_MIN;
else
modbusParams.address = addr;
uint32_t baudrate;
EEPROM.get(_EEPROM_MODBUS_BAUDRATE, baudrate);
switch (baudrate) {
case 115200: break;
case 57600: break;
case 38400: break;
case 19200: break;
case 9600: break;
case 4800: break;
case 2400: break;
case 1200: break;
case 300: break;
default: baudrate = 9600;
}
modbusParams.baudrate = baudrate;
uint8_t delay_ = EEPROM.read(_EEPROM_MODBUS_DELAY);
if (delay_ < _MODBUS_DELAY_MIN)
modbusParams.delay = _MODBUS_DELAY_MIN;
else if (delay_ > _MODBUS_DELAY_MAX)
modbusParams.delay = _MODBUS_DELAY_MAX;
else
modbusParams.delay = delay_;
}
void setModbusParams(const modbusParameters &p) {
bool changed = false;
if (p.address <= _MODBUS_ADDR_MAX) {
EEPROM.put(_EEPROM_MODBUS_ADDRESS, p.address);
modbusParams.address = p.address;
changed = true;
}
if (p.baudrate != _MODBUS_INVALID_BAUDRATE) {
EEPROM.put(_EEPROM_MODBUS_BAUDRATE, p.baudrate);
modbusParams.baudrate = p.baudrate;
changed = true;
}
if (p.delay <= _MODBUS_DELAY_MAX) {
EEPROM.put(_EEPROM_MODBUS_DELAY, p.delay);
modbusParams.delay = p.delay;
changed = true;
}
if (changed) {
#if _MODBUS == 1
beginModbus();
#endif
}
}
PSensor getPSensor() {
uint8_t val;
EEPROM.get(_EEPROM_P_SENSOR, val);
switch (val) {
case SMC_1_5V_0_5BAR:
pSensor = SMC_1_5V_0_5BAR;
break;
case GEMS_0_5V_0_6BAR:
pSensor = GEMS_0_5V_0_6BAR;
break;
default:
pSensor = SMC_1_5V_0_5BAR;
EEPROM.put(_EEPROM_P_SENSOR, pSensor);
}
return pSensor;
}
void setPSensor(const PSensor &sensor) {
EEPROM.put(_EEPROM_P_SENSOR, sensor);
pSensor = sensor;
}
void setup() {
#if _DEBUG == 1
Serial.begin(19200);
// char test[60];
// sprintf(test, "test: %u, %u, %u", 115200, 57600, 38400);
// Serial.println(test);
#endif
pinMode(53, OUTPUT); // Mega CS-Pin (um Slave-Betrieb zu vermeiden)
paramsChangedByUI = true;
d.init();
d.bgLight(true);
d.setModbusParams = setModbusParams;
d.setPSensor = setPSensor;
d.setParams = setParams;
getModbusParams();
_print("ModbusAddress: ");
_println(modbusParams.address);
_print("ModbusBaudrate: ");
_println(modbusParams.baudrate);
getPSensor();
getParams();
pinMode(BTN_PWR, INPUT_PULLUP);
#if _MODBUS == 1
bool modbusFail = false;
if (!mb.addDiscreteInputArea(0xD0, modbusValves, 1))
modbusFail = true;
if (!modbusFail && !mb.addHoldingRegisterArea(0xA0, modbusSetpoints, 6))
modbusFail = true;
if (!modbusFail && !mb.addCoilArea(0xB0, modbusStates, 1))
modbusFail = true;
if (!modbusFail && !mb.addHoldingRegisterArea(0xC0, modbusRefTime, 1))
modbusFail = true;
if (!modbusFail && !mb.addInputRegisterArea(0x00, modbusData, _REGS_INFRONTOF_EVENTS + _MODBUS_MAX_EVENTS))
modbusFail = true;
if (!modbusFail && !mb.addInputRegisterArea(0xF0, modbusMiscReadable, 2))
modbusFail = true;
if (modbusFail) {
d.modbusProblem();
while(1);
}
modbusData[0] = 0; // EventCounter
modbusData[1] = 0x8000; // setze das MSB. Das Bit wird durch setzen von modbusRefTime[0] zurückgesetzt
modbusData[2] = _SENSOR_FAULT; // Temp1 in 100stel-°C
modbusData[3] = _SENSOR_FAULT; // Temp2 in 100stel-°C, noch nicht implementiert
modbusData[4] = _SENSOR_FAULT; // Druck in 100stel bar
modbusData[5] = 0; // Zehntelsekunden seit Reglerstart / letzter Referenzierung
modbusMiscReadable[0] = _VERSION_NUMBER;
modbusMiscReadable[1] = 1; // Aktuell ist nur eine Kühlzone implementiert
modbusRefTime[0] = 0xFFFF;
beginModbus();
#endif
d.greeting();
delay(1000);
c.init(true);
if (params.cEn)
d.bgLight(true);
else
d.bgLight(100);
timeStamp = millis();
}
bool readPwrBtn() {
const uint8_t debounceDelay = 20;
static unsigned long lastDebounceTime;
static bool lastBounceState;
static bool steadyState;
bool currentState = !digitalRead(BTN_PWR);
if (currentState != lastBounceState) {
lastDebounceTime = millis();
lastBounceState = currentState;
}
if ((millis() - lastDebounceTime) > debounceDelay)
steadyState = currentState;
if (steadyState && (millis() - lastDebounceTime) > 3000)
d.reset();
return steadyState;
}
void loop() {
static bool pwrBtnPressed;
bool currentPwrBtnState = readPwrBtn();
if (!pwrBtnPressed && currentPwrBtnState) {
_println("pwrButton pressed");
pwrBtnPressed = true;
} else if(pwrBtnPressed && !currentPwrBtnState) {
_println("pwrButton released");
pwrBtnPressed = false;
parameters p;
p.cEn = !params.cEn;
if (p.cEn)
d.bgLight(true);
else
d.bgLight(100);
setParams(p);
}
#if _MODBUS == 1
mb.process();
checkModbusParams();
if (refTime != lastRefTime) {
lastRefTime = refTime;
timeStamp = millis();
modbusData[5] = 0;
eventCounter = 0;
timeStampOverflow = false;
// Setze das 'Timer-Überlauf'-Bit zurück (falls es gesetzt war)
bitClear(modbusData[1], 14);
// Nachden die 'ReferenzZeit' erstmalig gesetzt wurde, wird dieses Bit gelöscht
bitClear(modbusData[1], 15);
_println("Der 12 Bit Timer wurde zurückgesetzt");
}
if (!timeStampOverflow && (millis() - timeStamp) / 100 > 0xFFF) {
#if _DEBUG == 1
u16 passed = (millis() - timeStamp) / 100;
_print("Der 12 Bit Timer ist übergelaufen. Vergangene Sekunden: ");
_print(passed / 10); _print("."); _println(passed % 10);
#endif // _DEBUG ==
timeStampOverflow = true;
bitSet(modbusData[1], 14);
}
modbusData[5] = (millis() - timeStamp) / 100;
#endif // _MODBUS ==
c.process();
d.process();
#if 0
static unsigned long counter = 0;
static unsigned long tl = millis();
if (millis() - tl > 1000) {
tl = millis();
_print("Loops: "); _println(counter);
counter = 0;
} else {
counter++;
}
#endif
}